Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Este protocolo apresenta as ferramentas disponíveis para modelar ligantes de moléculas pequenas em mapas crioEM de macromoléculas.

Abstract

Decifrar as interações proteína-ligante em um complexo macromolecular é crucial para entender o mecanismo molecular, os processos biológicos subjacentes e o desenvolvimento de medicamentos. Nos últimos anos, a microscopia eletrônica de amostra criogênica (cryoEM) surgiu como uma técnica poderosa para determinar as estruturas de macromoléculas e investigar o modo de ligação do ligante em resolução quase atômica. Identificar e modelar moléculas não proteicas em mapas cryoEM é muitas vezes um desafio devido à resolução anisotrópica em toda a molécula de interesse e ao ruído inerente aos dados. Neste artigo, os leitores são apresentados a vários softwares e métodos atualmente usados para identificação de ligantes, construção de modelos e refinamento de coordenadas atômicas usando macromoléculas selecionadas. Uma das maneiras mais simples de identificar a presença de um ligante, conforme ilustrado com a enzima enolase, é subtrair os dois mapas obtidos com e sem o ligante. A densidade extra do ligante provavelmente se destacará no mapa de diferenças, mesmo em um limite mais alto. Há casos, como mostrado no caso do receptor metabotrópico de glutamato mGlu5, em que esses mapas de diferença simples não podem ser gerados. O método recentemente introduzido de derivar o mapa de omitir Fo-Fc pode servir como uma ferramenta para validar e demonstrar a presença do ligante. Finalmente, usando a bem estudada β-galactosidase como exemplo, o efeito da resolução na modelagem dos ligantes e moléculas de solvente em mapas de crioEM é analisado e uma perspectiva de como o cryoEM pode ser usado na descoberta de medicamentos é apresentada.

Introduction

As células realizam suas funções realizando inúmeras reações químicas simultânea e independentemente, cada uma meticulosamente regulada para garantir sua sobrevivência e adaptabilidade em resposta a estímulos ambientais. Isso é obtido pelo reconhecimento molecular, que permite que as biomoléculas, especialmente as proteínas, formem complexos transitórios ou estáveis com outras macromoléculas, bem como pequenas moléculas ou ligantes1. Assim, as interações proteína-ligante são fundamentais para todos os processos da biologia, que incluem a regulação da expressão e atividade proteica, o reconhecimento de substratos e cofatores por enzimas, bem com....

Protocol

1. Modelagem de fosfoenolpiruvato (PEP) em enolase de Mycobacterium tuberculosis

  1. Identificação da densidade do ligante no mapa crioEM do complexo PEP-enolase
    1. Faça o download dos semimapas não nitidos (emd_30988_additional_1.map e emd_30988_additional_2.map) da apo-enolase a partir dos dados adicionais no EMDB (consulte a Tabela de Materiais).
    2. Abra o ChimeraX (consulte a Tabela de Materiais). Abra os meios-mapas de apo-enolase clic.......

Representative Results

Exemplo 1
A enzima enolase de M. tuberculosis catalisa a penúltima etapa da glicólise e converte 2-fosfoglicerato em fosfoenolpiruvato (PEP), que é um intermediário essencial para várias vias metabólicas44,45. Os dados de CryoEM para as amostras de apo-enolase e enolase ligada a PEP foram coletados com o mesmo tamanho de pixel de 1,07 Å, e o processamento da imagem foi realizado com Relion 3.1 46,47.......

Discussion

As melhorias no hardware e software do microscópio resultaram em um aumento no número de estruturas crioEM nos últimos anos. Embora a resolução mais alta alcançada no momento em crioEM de partícula única seja de 1,2 Å 57,58,59, a maioria das estruturas está sendo determinada em torno de 3-4 Å de resolução. A modelagem de ligantes em mapas de média a baixa resolução pode ser complicada e muitas vezes repleta de am.......

Disclosures

Os autores não têm nada a divulgar.

Acknowledgements

SJ é beneficiário da bolsa de doutorado do DAE-TIFR, e o financiamento é reconhecido. A KRV reconhece a concessão DBT B-Life DBT/PR12422/MED/31/287/2014 e o apoio do Departamento de Energia Atômica, Governo da Índia, sob a Identificação do Projeto No. RTI4006.

....

Materials

NameCompanyCatalog NumberComments
CCP4-8.0Consortium of several instituteshttps://www.ccp4.ac.ukFree for academic users and includes Coot and list of tools developed for X-ray crystallography
CCP-EMConsortium of several instituteshttps://www.ccpem.ac.uk/download.phpFree for academic users and includes Coot, Relion and many others
Coot Paul Emsley, LMB, Cambridgehttps://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/General software for model building but also available with other suites described above
DockinMap (Phenix)Consortium of several instituteshttps://phenix-online.org/documentation/reference/dock_in_map.htmlSoftware inside the Phenix suite for docking model into cryoEM maps
Electron Microscopy Data Bank Consortium of several instituteshttps://www.ebi.ac.uk/emdb/Public Repository for Electron Microscopy maps
FalconThermo Fisher Scientific https://assets.thermofisher.com/TFS-Assets/MSD/Technical-Notes/Falcon-3EC-Datasheet.pdfCommercial, camera from Thermo Fisher 
Phenix Consortium of several instituteshttps://phenix-online.org/downloadFree for academic users and includes Coot
Protein Data BankConsortium of several instituteshttps://rcsb.orgPublic database of macromolecular structures
PymolSchrodingerhttps://pymol.org/2/Molecular viusalization tool. Educational version is free but comes with limitation. The full version can be obtained with a small fee.
RelionMRC-LMB, Cambridgehttps://relion.readthedocs.io/en/release-4.0/Installation.htmlSoftware for cryoEM image processing, also available with CCP-EM
Titan KriosThermo Fisher Scientific https://www.thermofisher.com/in/en/home/electron-microscopy/products/transmission-electron-microscopes/krios-g4-cryo-tem.html?cid=msd_ls_xbu_xmkt_tem-krios_285811_gl_pso_gaw_tpne1c&
gad_source=1&gclid=CjwKCAiA-P-rBhBEEiwAQEXhHyw5c8MKThmdA
AkZesWC4FYQSwIQRk
ZApkj08MfYG040DtiiuL8
RihoCebEQAvD_BwE
Commercial, cryoTEM from Thermo Fisher
UCSF ChimeraUCSF, USAhttps://www.cgl.ucsf.edu/chimera/download.htmlGeneral purpose software for display, analysis and more
UCSF Chimera XUCSF, USAhttps://www.cgl.ucsf.edu/chimerax/General purpose software for display, analysis and more

References

  1. Steinbrecher, T., Labahn, A. Towards accurate free energy calculations in ligand protein-binding studies. Curr Med Chem. 17, 767-785 (2010).
  2. Fu, Y., Zhao, J., Chen, Z.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Este m s em JoVEedi o 209

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved