Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

O experimento usado aqui mostra um método de docking molecular combinado com ensaio de deslocamento térmico celular para prever e validar a interação entre pequenas moléculas e alvos proteicos.

Abstract

As proteínas são fundamentais para a fisiologia humana, sendo seus alvos cruciais na pesquisa e no desenvolvimento de medicamentos. A identificação e validação de alvos proteicos cruciais tornaram-se parte integrante do desenvolvimento de medicamentos. O docking molecular é uma ferramenta computacional amplamente utilizada para investigar a ligação proteína-ligante, especialmente no contexto de interações entre drogas e proteínas-alvo. Para a verificação experimental da ligação e para acessar a ligação do medicamento e seu alvo diretamente, é utilizado o método de ensaio de deslocamento térmico celular (CETSA). Este estudo teve como objetivo integrar o docking molecular com o CETSA para prever e validar interações entre drogas e alvos de proteínas vitais. Especificamente, previmos a interação entre xanthatina e a proteína Keap1, bem como seu modo de ligação por meio de análise de docking molecular, seguida de verificação da interação usando o ensaio CETSA. Nossos resultados demonstraram que a xanthatina pode estabelecer ligações de hidrogênio com resíduos de aminoácidos específicos da proteína Keap1 e reduzir a termoestabilidade da proteína Keap1, indicando que a xanthatina pode interagir diretamente com a proteína Keap1.

Introduction

As proteínas são macromoléculas altamente importantes nos organismos vivos e possuem uma gama diversificada de funções únicas dentro das células, como composição da membrana, formação do citoesqueleto, atividade enzimática, transporte, sinalização celular e envolvimento em mecanismos intracelulares e extracelulares 1,2,3. As proteínas manifestam suas funções biológicas principalmente por meio de interações específicas com uma variedade de moléculas, incluindo outras proteínas, ácidos nucléicos, ligantes de moléculas pequenas e íons metálicos 1,4

Protocol

1. Baixando as estruturas de xanthatin e Keap1

  1. Abra o banco de dados PubChem (https://pubchem.ncbi.nlm.nih.gov/), insira xanthatin (molécula pequena), pressione Pesquisar e clique em O primeiro resultado. Clique em Download e clique em Salvar em Estrutura 2D para salvar o composto no formato .sdf.
  2. Baixe a estrutura cristalina da proteína.
    1. Abra o banco de dados UniProt (https://www.uniprot.org/), insira Keap1 .......

Representative Results

A análise de docking molecular previu a interação entre xanthatin e proteína Keap1. A Figura 2 demonstra a formação de ligações de hidrogênio entre a xanateína e os resíduos de aminoácidos Gly-367 e Val-606 da proteína Keap1, com um comprimento de ligação de hidrogênio de 2,17 Å para Gly-367 e 2,13 Å para Val-606. Além disso, a pontuação de encaixe calculada de -5,69 kcal / mol significa uma boa afinidade de ligação entre a xanthatina e a proteína Keap1.

Discussion

A identificação de alvos de doenças e a descoberta e desenvolvimento de medicamentos estão intimamente interligadas27. Ao visar precisamente alvos específicos, os candidatos a medicamentos podem ser desenvolvidos para tratar doenças específicas de forma mais eficaz, minimizando simultaneamente os efeitos colaterais associados aos medicamentos28,29. Os alvos mais comumente usados são alvos de proteínas30. No.......

Acknowledgements

Este trabalho foi apoiado pela Fundação Nacional de Ciências Naturais da China (82004031) e pelo Programa de Ciência e Tecnologia de Sichuan (2022NSFSC1303). Expressamos nossa grande gratidão a Jiayi Sun no Instituto Inovador de Medicina Chinesa e Farmácia, Universidade de Medicina Tradicional Chinesa de Chengdu, pela assistência com western blot.

....

Materials

NameCompanyCatalog NumberComments
0.45 μm Polyvinylidene fluoride membraneMilliporePR05509
Anhydrous ethanolChron chemicals64-17-5
Bovine serum albuminBioFroxx4240GR100
Broad-spectrum protease inhibitor mixturesBoster Biological Technology Co., LtdAR1193
DMSOBoster Biological Technology Co., LtdPYG0040
Enhanced chemiluminescence reagentBeyotime Biotechnology Co., LtdP0018S
GAPDH antibodyProteinTech Group Co., Ltd10494-1-AP
Gel Imaging InstrumentE-BLOTTouch Imager Pro
Gradient PCR instrumentBiometra TADVANCEDBiometra Tadvanced 96SG
High-speed freezing centrifugeBeckman CoulterAllegra X-30R
Horseradish peroxidase-conjugated affiniPure goat antibodyProteinTech Group Co., LtdSA00001-2
Isopropyl alcohol Chron chemicals67-63-0
Keap1 antibodyZen BioScience Co., LtdR26935
Metal bathAnalytik JenaTSC
MethanolChron chemicals67-56-1
Ncmblot rapid transfer buffer (20×)NCM Biotech Co., LtdWB4600
Omni-Easy OneStep PAGE gel fast preparation kieEpizyme Biotech Co., LtdPG212
Phosphate buffer salineBoster Biological Technology Co., LtdPYG0021
Prestained Color Protein MarkerBiosharp BL741A
Protein Blotting Electrophoresis SystemBio-RadMiniPROTEANÒTetra Cell
RAW264.7 cellBeyotime Biotechnology Co., LtdC7505
RAW264.7 cell-specific mediumProcell Life Science&Technology Co., LtdCM-0597
SDS-PAGE protein loading bufferBoster Biological Technology Co., LtdAR1112-10
SDS-PAGE running buffer powderServicebioG2018
Tris buffered saline powderServicebioG0001
Tween 20BioFroxx1247ML100
Water bathMemmertWNE10
Water purifierMilliporeMilli- IQ 7005
XanthatinChemConst Biotechnology Co., LtdCONST210706

References

  1. Soleymani, F., Paquet, E., Viktor, H., Michalowski, W., Spinello, D. Protein-protein interaction prediction with deep learning: A comprehensive review. Computat Struct Biotechnol J. 20, 5316-5341 (2022).
  2. Du, X., et al.

Explore More Articles

MedicinaEdi o 204

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved