Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Presentiamo un protocollo per la ricostituzione delle proteine di membrana e l'incapsulamento di enzimi e altri componenti idrosolubili in vescicole lipidiche di dimensioni sub-micrometriche e micrometriche.

Abstract

Presentiamo un metodo per incorporare nelle vescicole reti proteiche complesse, che coinvolgono proteine di membrana integrali, enzimi e sensori basati sulla fluorescenza, utilizzando componenti purificati. Questo metodo è rilevante per la progettazione e la costruzione di bioreattori e lo studio di complesse reti di reazioni metaboliche fuori equilibrio. Iniziamo ricostituendo (multiple) proteine di membrana in grandi vescicole unilamellari (LUV) secondo un protocollo precedentemente sviluppato. Quindi incapsulamo una miscela di enzimi purificati, metaboliti e sensori basati sulla fluorescenza (proteine fluorescenti o coloranti) tramite liofilizzazione-scongelamento-estrusione e rimuoviamo i componenti non incorporati mediante centrifugazione e/o cromatografia ad esclusione dimensionale. Le prestazioni delle reti metaboliche vengono misurate in tempo reale monitorando il rapporto ATP/ADP, la concentrazione di metaboliti, il pH interno o altri parametri mediante lettura a fluorescenza. Le nostre vescicole contenenti proteine di membrana con diametro di 100-400 nm possono essere convertite in vescicole unilamellari giganti (GUV), utilizzando le procedure esistenti ma ottimizzate. L'approccio consente l'inclusione di componenti solubili (enzimi, metaboliti, sensori) in vescicole di dimensioni micrometriche, aumentando così il volume dei bioreattori di ordini di grandezza. La rete metabolica contenente i GUV è intrappolata in dispositivi microfluidici per l'analisi mediante microscopia ottica.

Introduction

Il campo della biologia sintetica bottom-up si concentra sulla costruzione di cellule (minime) 1,2 e bioreattori metabolici per scopi biotecnologici 3,4 o biomedici 5,6,7,8. La costruzione di cellule sintetiche fornisce una piattaforma unica che consente ai ricercatori di studiare le proteine (di membrana) in condizioni ben definite che imitano quelle degli ambienti nativi, consentendo la scoperta di proprietà emerge....

Protocol

1. Preparazione generale

  1. Prodotti chimici
    1. Sciogliere i lipidi (in polvere) a 25 mg/mL in CHCl3 per produrre liposomi preformati.
      NOTA: È preferibile preparare brodi lipidici freschi, ma le soluzioni madre possono essere conservate anche a -20 °C per alcune settimane. Lavorare con i lipidi in polvere è più accurato rispetto all'utilizzo di lipidi già solubilizzati in CHCl3. CHCl3 deve essere maneggiato utilizzando pipette e/o siringhe di vetro e co.......

Representative Results

La ricostituzione delle proteine solubilizzate di membrana nei liposomi richiede la destabilizzazione delle vescicole preformate. L'aggiunta di basse quantità di Triton X-100 si traduce inizialmente in un aumento dell'assorbanza a 540 nm (A540) a causa di un aumento della dispersione della luce dovuta al rigonfiamento delle vescicole (Figura 4). Il valore massimo di A540 è il punto in cui i liposomi sono saturi di detergente (Rsat), dopodiché qual.......

Discussion

Presentiamo un protocollo per la sintesi di proteine (di membrana) contenenti vescicole lipidiche di dimensioni sub-micrometriche (proteoLUVs), e la conversione di proteoLUV in vescicole giganti-unilamellari (proteoGUVs). Il protocollo dovrebbe essere applicabile per la ricostituzione di altre proteine di membrana 13,19,30,40 e l'incapsulamento di reti metaboliche diverse dalle vie di degradazione della L-arginina e di sintesi del glicerolo 3-fosfato qui presentate.

Disclosures

Gli autori dichiarano di non avere alcun interesse finanziario concorrente.

Acknowledgements

Gli autori ringraziano Aditya Iyer per la clonazione del gene pBAD-PercevalHR e Gea Schuurman-Wolters per aver contribuito alla produzione e alla purificazione delle proteine. La ricerca è stata finanziata dal programma di gravitazione NWO "Building a Synthetic Cell" (BaSyC).

....

Materials

NameCompanyCatalog NumberComments
AgaroseSigma AldrichA9414-25g
Amicon cut-off filterSigma AldrichMilipore centrifugal filter units Amicon Ultra 
BioBeadsBioRad152-3920
CHCl3Macron Fine ChemicalsMFCD00000826
D(+)-GlucoseFormedium-
D(+)-SucroseFormedium-
DDMGlyconD97002 -C
Diethyl EtherBiosolve52805
DMSOSigma-Aldrich276855-100ml
DOPCAvanti850375P-1g
DOPEAvanti850725P-1g
DOPGAvanti840475P-1g
DTTFormedium DTT005
EtOHJ.T.Baker AvantorMFCD00003568
ExtruderAvestin IncLF-1
FluorimeterJascoSpectrofluorometer FP-8300
GlycerolBOOM51171608
Gravity flow columnBio-Rad732-1010
Hamilton syringe 100 µLHamilton7656-01
Hamilton syringe 1000 µLHamilton81320
Handheld LCP dispenserArt Robbins Instruments620-411-00
Handheld SonicatorHielscher Ultrasound TechnologyUP50H
HClBOOMx76021889.1000
ImidazoleRothX998.4-250g
K2HPO4Supelco1.05099.1000
KClBOOM76028270.1
KH2PO4Supelco1.04873.1000
KimwipeKimtech Science7552
Large Falcon tube centrifugeEppendorfCentrifuge 5810 R
L-ArginineSigma-AldrichA5006-100G
Light microscopeLeicaDM LS2
L-OrnithineRothT204.1
LSM Laser Scanning Confocal MicroscopeZeissLSM 710 ConfoCor 3
MgCl2Sigma-AldrichM2670-1KG
Microfluidic chipHomemade PDMS basedDOI: https://doi.org/10.1039/C8LC01275J
Na-ADPSigma-AldrichA2754-1G
NaClSupelco1.06404.1000
Nanodrop SpectrometerIsogen Life ScienceND-1000 spectrophotometer NanoDrop
NaOHSupelco1.06498.1000
Needles for GUVsHenke-Ject14-1457527 G x 3/4'' 0.4 x 20 mm
Needles for microfluidicsHenke-Ject14-1553818 G x 1 1/2'' 1.2 x 40 mm
Ni2+ SepharoseCytiva17526802
NigericinSigma-AldrichN7143-5MG
NutatorVWR83007-210
Osmolality meterGonotec SalmenkippOsmomat 3000 basic freezing point osmometer
PlasmacleanerPlasma EtchPE-Avenger
Polycarbonate filterCytiva WhatmanNuclepor Track-Etch Membrane Product: 104171040.4 µm
Polycarbonate ultracentrifuge tubeBeckman Coulter355647
PyranineAcros OrganicsH1529-1G
Quartz cuvette (black)Hellma Analytics108B-10-40
Sephadex G-75 resin GE Healthcare17-0050-01
SonicatorSonics Sonics & Materials INCSonics vibra cell
Syringe filterSarstedtFiltropur S plus 0.20.2 µm
Syringe pumpHarvard ApparatusA-42467
Tabletop centrifugeEppendorfcentrifuge 5418
Teflon spacerHomemade Teflon based45 x 26 x 1.5 or 45 x 26 x 3 or 20 x 20 x 3 mm
TrisPanReac AppliChemA1086.1000
Triton X-100Sigma AldrichT8787-100 ml
UltracentrifugeBeckman CoulterOptima Max-E
UV lampSpectrolineENB-280C/FE
UV/VIS SpectrometerJascoV730 spectrophotometer
ValinomycinSigma-AldrichV0627-10MG
Widefield fluorescence microscopeZeissAxioObserver
β-CaseinSigma AldrichC5890-500g

References

  1. Hirschi, S., Ward, T. R., Meier, W. P., Müller, D. J., Fotiadis, D. Synthetic biology: bottom-up assembly of molecular systems. Chem Rev. 122 (21), 16294-16328 (2022).
  2. Ivanov, I., et al. Bottom-up synthesis o....

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Reti metaboliche fuori equilibrioricostituzione delle proteine di membranagrandi vescicole unilamellari LUVvescicole unilamellari giganti GUVbioreattorisensori basati sulla fluorescenzaincapsulamento enzimaticoincapsulamento di metaboliti

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved