JoVE Logo
Faculty Resource Center

Sign In

Abstract

Medicine

Monitoring Lung Function with Electrical Impedance Tomography in the Intensive Care Unit

Published: September 6th, 2024

DOI:

10.3791/66756

1Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 2Department of Anesthesiology, Faculty of Medicine, Chulalongkorn University. King Chulalongkorn Memorial Hospital, 3Department of Anesthesiology and Intensive Care Medicine, Catholic University of Sacred Heart, 4School of Medicine and Surgery, University of Milano-Bicocca, 5Department of Respiratory Care, Massachusetts General Hospital, Harvard Medical School, 6Electronics Engineering, Aeronautics Institute of Technology, 7Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo
* These authors contributed equally

Electrical Impedance Tomography (EIT) is a groundbreaking, non-invasive, and radiation-free imaging technique for continuous, real-time ventilation monitoring. It also has an application in pulmonary perfusion monitoring. EIT quantifies ventilation and perfusion patterns across the lung from the measurement and processing of impedance changes in the thorax. It is a powerful tool for clinicians to visualize breath-by-breath changes in pulmonary function.

An innovative application of EIT is its ability to assess pulmonary perfusion using the kinetic analysis of a hypertonic solution injection during a breath-hold. The solution generates an impedance change in the thorax as it circulates through the pulmonary vasculature. This indirect method allows for the estimation of perfusion patterns, contributing significantly to our understanding of pulmonary blood flow dynamics at the bedside.

EIT is not just a tool for monitoring but also can be critical for the diagnosis of respiratory pathologies such as pneumothorax and bronchial intubation. It can help identify the etiology of ventilation/perfusion (V/Q) mismatch in patients receiving invasive mechanical ventilation, which is not possible with other diagnostic tools. Moreover, EIT can assist in the individual optimization of ventilator settings, such as Positive End-Expiratory Pressure (PEEP) titration and tidal volume improving oxygenation and lung health in critical care.

In summary, EIT represents a paradigm shift in bedside pulmonary monitoring and diagnostics. Its non-invasive nature and immediacy of data make EIT an indispensable tool in modern respiratory medicine. With its growing applications, EIT will be pivotal in advancing our understanding of and approach to respiratory care, particularly in intensive care settings.

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved