Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Este método descreve um protocolo de imunofluorescência e pipeline de quantificação para avaliar a distribuição de proteínas com padrões variados de organização nuclear em linfócitos T humanos. Este protocolo fornece orientação passo a passo, começando pela preparação da amostra e continuando com a execução da análise semiautomatizada em Fiji, concluindo com o tratamento de dados por um notebook Google Colab.

Abstract

Vários processos nucleares, como o controle transcricional, ocorrem dentro de estruturas discretas conhecidas como focos que são discerníveis através da técnica de imunofluorescência. Investigar a dinâmica desses focos sob diversas condições celulares por meio de microscopia produz informações valiosas sobre os mecanismos moleculares que governam a identidade e as funções celulares. No entanto, a realização de ensaios de imunofluorescência em diferentes tipos de células e a avaliação de alterações na montagem, difusão e distribuição desses focos apresentam inúmeros desafios. Esses desafios abrangem complexidades na preparação de amostras, determinação de parâmetros para análise de dados de imagem e gerenciamento de volumes substanciais de dados. Além disso, os fluxos de trabalho de imagem existentes geralmente são adaptados para usuários proficientes, limitando assim a acessibilidade a um público mais amplo.

Neste estudo, apresentamos um protocolo de imunofluorescência otimizado adaptado para investigar proteínas nucleares em diferentes tipos de células T primárias humanas que podem ser personalizadas para qualquer proteína de interesse e tipo de célula. Além disso, apresentamos um método para quantificar de forma imparcial a coloração de proteínas, quer elas formem focos distintos ou exibam uma distribuição nuclear difusa.

Nosso método proposto oferece um guia abrangente, desde a coloração celular até a análise, aproveitando um pipeline semiautomatizado desenvolvido em Jython e executável em Fiji. Além disso, fornecemos um script Python fácil de usar para simplificar o gerenciamento de dados, acessível publicamente em um notebook do Google Colab. Nossa abordagem demonstrou eficácia em produzir análises de imunofluorescência altamente informativas para proteínas com diversos padrões de organização nuclear em diferentes contextos.

Introduction

A organização do genoma eucariótico é governada por múltiplas camadas de modificações epigenéticas1, coordenando várias funções nucleares que podem ocorrer dentro de compartimentos especializados chamados corpos nucleares ou condensados2. Dentro dessas estruturas, ocorrem processos como iniciação da transcrição3, processamento de RNA 4,5,6, reparo de DNA 7,8, biogênese do ribossomo 9,10,11....

Protocol

O uso de amostras humanas para fins de pesquisa foi aprovado pelos Comitês de Ética da Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Cà Granda Ospedale Maggiore Policlinico (Milão), e o consentimento informado foi obtido de todos os sujeitos (números de autorização: 708_2020). O protocolo é organizado em três seções principais: execução de imunofluorescência, aquisição de imagem e análise de imagem. Em média, são necessários 4 dias úteis para ser concluído (

Representative Results

O protocolo descrito neste método facilita a visualização e quantificação de alterações na coloração de proteínas nucleares em células T primárias humanas e pode ser personalizado para diversos tipos de células e alvos de proteínas. Como estudos de caso, conduzimos e analisamos a coloração de BRD4 e SUZ12 em células virgens e TH1 CD4+ .

O BRD4 exibe um padrão de coloração bem pontilhado em células TH1 CD4 + virge.......

Discussion

Neste estudo, apresentamos um método para a realização de experimentos de imunofluorescência em proteínas nucleares em linfócitos T humanos. Esse método oferece flexibilidade para uso com vários tipos de células por meio de pequenas modificações nas etapas de fixação e permeabilização, conforme descrito anteriormente30,31.

Nosso fluxo de trabalho de imagem baseia-se em técnicas estabelecidas descritas na literatura, esp.......

Disclosures

A RV tem uma colaboração científica com a startup T-One Therapeutics Srl; B.B. e F.M. são cofundadores da startup T-One Therapeutics Srl; E.P. é atualmente empregado pela T-One Therapeutics Srl; Todos os outros autores declaram não ter interesses conflitantes.

Acknowledgements

Agradecemos a assistência científica e técnica do INGM Imaging Facility, em particular, C. Cordiglieri e A. Fasciani, e do INGM FACS Facility em particular M.C Crosti (Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi' (INGM), Milão, Itália). Agradecemos a M. Giannaccari por seu suporte técnico de informática. Este trabalho foi financiado pelas seguintes doações: Fondazione Cariplo (Bando Giovani, concessão nº 2018-0321) e Fondazione AIRC (concessão nº MFAG 29165) para F.M. Ricerca Finalizzata, (concessão nº GR-2018-12365280), Fondazione AIRC (concessão nº 2022 27066), Fondazione Cariplo (concessão nº 2019-3416), Fondazione Regionale per la Ricerca....

Materials

NameCompanyCatalog NumberComments
1.5 mL Safe-Lock TubesEppendord#0030121503Protocol section 1
10 mL Serological pipettesVWR#612-3700Protocol section 1
20 µL barrier pipette tipThermo Scientific#2149P-HRProtocol section 1
50 mL Polypropylene Conical TubeFalcon#352070Protocol section 1
200 µL barrier pipette tipThermo Scientific#2069-HRProtocol section 1
antifade solution - ProlongGlass - mountingmediaInvitrogen#P36984Step 1.3.12
BSA (Bovine Serum Albumin)Sigma#A7030Step 1.3.6., 1.3.8.
CD4+ T Cell Isolation KitMiltenyi Biotec#130-096-533Step 1.1.2.
DAPI (4,6-diamidino-2-phenylindole)InvitrogenCat#D1306Step 1.3.10.
Dry iceStep 1.3.1.
Dynabeads Human T-activator anti-CD3/anti-CD28 beadLife Technologies#1131Dmagnetic beads step 1.1.4.
EtOHCarlo Erba#4146320Step 1.2.1.1.
FACSAria SORPBD BioscencesStep 1.1.3. Equipped with BD FACSDiva Software version 8.0.3
FBS (Fetal Bovine Serum)Life Technologies#10270106Step 1.1.4
FICOLL PAQUE PLUSEurocloneGEH17144003F32Step 1.1.1.
FIJI Version 2.14.0--Protocol section 3
Glass coverslip (10 mm, thickness 1.5 H)Electron Microscopy Sciences#72298-13Step 1.2.1.
GlycerolSigma#G5516Step 1.2.7-1.3.1.
Goat anti-Rabbit AF568 secondary antibodyInvitrogenA11036Step 1.3.8.
HClSigma#320331Step 1.3.4.
human neutralizing anti-IL-4Miltenyi BiotecCat#130-095-753Step 1.1.4.
human recombinant IL-12Miltenyi BiotecCat#130-096-704Step 1.1.4.
human recombinant IL-2Miltenyi BiotecCat#130-097-744Step 1.1.4.
Leica TCS SP5 Confocal microscopeLeica Microsystems-Protocol section 2, Equipped with HCX PL APO 63x, 1.40 NA oil immersion objective, with an additional 3x zoom. Pinhole size : 0.8 AU. Line average 2×. Frame size 1024×1024 pixel.
MEM Non-Essential Amino Acids SolutionLife Technologies#11140035Step 1.1.4.
Microscope SlidesVWR#631-1552Step 1.3.12.
Mouse monoclonal anti-Human CD4 APC-Cy7 (RPA-T4 clone)BD Bioscience#557871Step 1.1.3.
Mouse monoclonal anti-Human CD45RA PECy5 (5H9 clone)BD Bioscience#552888Step 1.1.3.
Mouse monoclonal anti-Human CD45RO APC (UCHL1 clone)Miltenyi Biotec#130-113-546Step 1.1.3.
Multiwell 24 wellFalcon#353047Protocol section 1
Normal Goat SerumInvitrogenPCN5000Step 1.3.6., 1.3.8.
PBSLife Technologies#14190094Protocol section 1
Penicillin/Streptomycin solutionLife Technologies#15070063Step 1.1.4.
PFASigma#P6148Step 1.2.4.
poly-L-lysineSigma#P89201.2.1.
Primary antibody - BRD4Abcam#ab128874Step 1.3.6.
Primary antibody - SUZ12Cel SignallingmAb #3737Step 1.3.6.
RPMI 1640 W/GLUTAMAX-ILife Technologies#61870010Step 1.1.4.
Sodium PyruvateLife Technologies#11360039Step 1.1.4.
Triton X-100Sigma#T8787Step 1.2., 1.3.
TWEEN 20Sigma#P9416Step 1.3.
Tweezers--Protocol section 1

References

  1. Aboelnour, E., Bonev, B. Decoding the organization, dynamics, and function of the 4D genome. Dev Cell. 56 (11), 1562-1573 (2021).
  2. Erdel, F., Rippe, K. Formation of chromatin subcompartments by phase separation.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Corpos NuclearesImunofluoresc nciaDin mica de Prote nas NuclearesAn lise de ImagensAn lise de C lulas TPipeline JythonGerenciamento de Dados

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved