JoVE Logo
Faculty Resource Center

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Biology

Studies on the Anti-Inflammatory Effect of Xiaoyao Pills in The Treatment of Postmenopausal Osteoporosis in Mice

Published: August 23rd, 2024

DOI:

10.3791/67051

1Department of Histology and Embryology, Youjiang Medical University for Nationalities, 2Department of Geriatric Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, 3Department of Pathophysiology, Youjiang Medical University for Nationalities

Osteoporosis is a common metabolic disease of elderly and postmenopausal women, with no obvious symptoms during its early stages. In the latter stages of this condition, the patients are prone to fractures, and this can seriously affect their health and quality of life. The worldwide increase in life expectancy has made osteoporosis a global concern. The Xiaoyao pills were previously
used in the treatment of depression. In addition, the drug appeared to have estrogen-like activity, which affected the expression of ALP, an early osteoblast-specific marker, and COL-1, a major component of bone extracellular matrix. Xiaoyao pills were assessed for their effects on postmenopausal osteoporosis (PMOM) in mice. The target information of each herbal component of Xiaoyao pills was accessed through the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Information from GeneCards, OMIM, PharmGkb, TTD, DrugBank, and other websites was used to construct the regulatory network of the herbal complex through Cytoscape and String network to assess the protein interactions. Mice were ovariectomized, and treated with high and low doses of Xiaoyao pills and these were compared to controls. Their symptoms were assessed by immunocytochemistry of bone tissues. The results suggested that Xiaoyao pills had the ability to alleviate the symptoms of PMOM in ovariectomized mice through the IL-17 signaling pathway. This drug has the potential to become a novel therapeutic agent for the treatment of osteoporosis.

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved