JoVE Logo
Faculty Resource Center

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Biology

Larval RNA Interference in Silkworm Bombyx mori through Chitosan/dsRNA Nanoparticle Delivery

Published: October 4th, 2024

DOI:

10.3791/67360

1School of Life Sciences, Guangzhou University

Abstract

The silkworm, Bombyx mori, is an important economic insect with thousands of years of history in China. Meanwhile, the silkworm is the model insect of Lepidoptera with a good accumulation of basic research. It is also the first insect in Lepidoptera with its complete genome sequenced and assembled, which provides a solid foundation for gene functional study. Although RNA interference (RNAi) is widely used in reverse gene functional study, it is refractory in silkworms and other Lepidopteran species. Previous successful RNAi-related research to deliver double-stranded RNA (dsRNA) was performed through injection only. Delivery of dsRNA through feeding is never reported. In this article, we describe step-by-step procedures to prepare the chitosan/dsRNA nanoparticles, which are fed to the silkworm larvae by ingestion. The protocol includes (i) selection of the proper stage of silkworm larvae, (ii) synthesis of dsRNA, (iii) preparation of the chitosan/dsRNA nanoparticles, and (iv) feeding the silkworm larvae with chitosan/dsRNA nanoparticles. Representative results, including gene transcript confirmation and phenotype observation, are presented. dsRNA feeding is a simple technique for RNAi in silkworm larvae. Since silkworm larvae are easy to rear and large enough to operate, it provides a good model to demonstrate larval RNAi in insects. In addition, the simplicity of this technique stimulates more student involvement in research, making silkworm larvae an ideal genetic system for use in a classroom setting.

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved