Oturum Aç

In the AX proton spin system, proton A can sense the two spin states of a coupled proton X, resulting in a doublet NMR signal with two peaks of equal (1:1) intensity. When proton A is coupled to two equivalent protons (AX2 spin system), the spin states of each X can be aligned with or against the external field, creating three possible scenarios. This results in a 1:2:1 triplet signal, where the central peak corresponds to the chemical shift of A and is twice as large or intense as the others. Similarly, if A has three neighbors (AX3 spin system), four possible electronic environments result in a quartet of peaks with the relative intensities 1:3:3:1.

Empirically, a proton coupled to n equivalent neighbors yields a multiplet signal split into n + 1 peaks. The relative intensities of the peaks in a multiplet can be predicted using Pascal's triangle, which is an array where each entry is the sum of the entries to its left and right in the row above it.

Etiketler

1H NMRSignal Splittingn 1 RuleAX Proton Spin SystemDoublet NMR SignalTriplet SignalQuartet PeaksRelative IntensitiesMultiplet SignalChemical ShiftElectronic EnvironmentsPascal s Triangle

Bölümden 8:

article

Now Playing

8.12 : Interpreting ¹H NMR Signal Splitting: The (n + 1) Rule

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Görüntüleme Sayısı

article

8.1 : Chemical Shift: Internal References and Solvent Effects

Interpreting Nuclear Magnetic Resonance Spectra

532 Görüntüleme Sayısı

article

8.2 : NMR Spectroscopy: Chemical Shift Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.3K Görüntüleme Sayısı

article

8.3 : Proton (¹H) NMR: Chemical Shift

Interpreting Nuclear Magnetic Resonance Spectra

1.4K Görüntüleme Sayısı

article

8.4 : Inductive Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.0K Görüntüleme Sayısı

article

8.5 : π Electron Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

998 Görüntüleme Sayısı

article

8.6 : π Electron Effects on Chemical Shift: Aromatic and Antiaromatic Compounds

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Görüntüleme Sayısı

article

8.7 : ¹H NMR Chemical Shift Equivalence: Homotopic and Heterotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

2.2K Görüntüleme Sayısı

article

8.8 : ¹H NMR Chemical Shift Equivalence: Enantiotopic and Diastereotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

1.3K Görüntüleme Sayısı

article

8.9 : ¹H NMR Signal Integration: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.2K Görüntüleme Sayısı

article

8.10 : NMR Spectroscopy: Spin–Spin Coupling

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Görüntüleme Sayısı

article

8.11 : ¹H NMR Signal Multiplicity: Splitting Patterns

Interpreting Nuclear Magnetic Resonance Spectra

4.8K Görüntüleme Sayısı

article

8.13 : Spin–Spin Coupling Constant: Overview

Interpreting Nuclear Magnetic Resonance Spectra

837 Görüntüleme Sayısı

article

8.14 : Spin–Spin Coupling: One-Bond Coupling

Interpreting Nuclear Magnetic Resonance Spectra

900 Görüntüleme Sayısı

article

8.15 : Spin–Spin Coupling: Two-Bond Coupling (Geminal Coupling)

Interpreting Nuclear Magnetic Resonance Spectra

893 Görüntüleme Sayısı

See More

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır