JoVE Logo

Oturum Aç

7.8 : Relation Between the Distributed Load and Shear

Understanding the relationship between the distributed load and shear force in structural analysis is crucial for analyzing beams subjected to various loading conditions. Consider the case of a beam experiencing a distributed load, two concentrated loads, and a couple moment.

Static equilibrium diagram with forces F1, F2; equations ΔF=w(x)Δx, Δk=k(Δx); spring load setup.

The connection between the shear force and the distributed load for the given case can be established following the given procedure. First, consider an elemental section on the beam free from any concentrated load or couple moment. We can draw a free-body diagram to analyze the forces acting on this section. The diagram will consist of the distributed load acting along the length of the beam, the shear force V(x) acting on the right-hand side of the section, and an incremental shear force dV added to maintain the equilibrium.

To maintain equilibrium in the vertical direction, the shear force acting on the right-hand side of the section should be incremented by a small and finite amount, ΔV. The resultant force of the distributed load, w(xx, acts at a fractional distance from the right end of the section.

Using the equation of equilibrium for vertical force, the following relation between shear and load can be obtained:

Change in potential energy formula, ΔV=-w(x)Δx, static equilibrium, concept diagram.

Next, we will divide both sides of the equation by Δx and let Δx approach zero:

Static equilibrium equation \( \frac{dV}{dx} = -w(x) \), formula for load distribution analysis.

This equation shows that the slope of the shear force is equal to the distributed load intensity.

Finally, we can rearrange the equation and integrate the distributed load over the elemental section between two arbitrary points, Q and R:

Static equilibrium equation: VR-VQ=-∫w(x)dx, integral formula for physics, mathematics.

This integral equation demonstrates the relationship between the change in shear force and the area under the load curve. The difference in shear force between points Q and R equals the area under the distributed load curve between these two points.

Etiketler

Distributed LoadShear ForceStructural AnalysisBeam Loading ConditionsFree body DiagramEquilibriumIncremental Shear ForceVertical Force EquilibriumShear Force SlopeLoad IntensityIntegral EquationLoad Curve Area

Bölümden 7:

article

Now Playing

7.8 : Relation Between the Distributed Load and Shear

İç Kuvvetler

584 Görüntüleme Sayısı

article

7.1 : Sözleşmeyi İmzala

İç Kuvvetler

1.8K Görüntüleme Sayısı

article

7.2 : Normal ve Kesme Kuvveti

İç Kuvvetler

2.0K Görüntüleme Sayısı

article

7.3 : Eğilme ve burulma momentleri

İç Kuvvetler

3.4K Görüntüleme Sayısı

article

7.4 : Yapı Elemanlarında İç Yüklemeler: Problem Çözme

İç Kuvvetler

1.2K Görüntüleme Sayısı

article

7.5 : Kiriş

İç Kuvvetler

1.3K Görüntüleme Sayısı

article

7.6 : Kesme Diyagramı

İç Kuvvetler

712 Görüntüleme Sayısı

article

7.7 : Eğilme Momenti Diyagramı

İç Kuvvetler

952 Görüntüleme Sayısı

article

7.9 : Kesme ve eğilme momenti arasındaki ilişki

İç Kuvvetler

944 Görüntüleme Sayısı

article

7.10 : Kesme ve Eğilme Momenti Diyagramı: Problem Çözme

İç Kuvvetler

1.2K Görüntüleme Sayısı

article

7.11 : Konsantre yüklere maruz kalan kablo

İç Kuvvetler

767 Görüntüleme Sayısı

article

7.12 : Dağıtılmış bir yüke maruz kalan kablo

İç Kuvvetler

614 Görüntüleme Sayısı

article

7.13 : Kendi ağırlığına maruz kalan kablo

İç Kuvvetler

408 Görüntüleme Sayısı

article

7.14 : Kablo: Problem Çözme

İç Kuvvetler

299 Görüntüleme Sayısı

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır