Bu içeriği görüntülemek için JoVE aboneliği gereklidir. Oturum açın veya ücretsiz deneme sürümünü başlatın.
Method Article
Yüksek basınçlı bir hücreyi monte etmek, yüksek basınçlı NMR deneylerini kurmak ve kaydetmek ve son olarak basınç altında hem pik yoğunluk hem de kimyasal kayma değişikliklerini analiz etmek için gereken adımların ayrıntılı bir açıklamasını sunuyoruz. Bu deneyler, proteinlerin katlanır yolları ve yapısal stabilitesi hakkında değerli içgörüler sağlayabilir.
Yüksek basınç, küresel proteinlerin dengesini bozmak ve protein komplekslerini ters çevrilebilir bir şekilde ayrıştırmak için kullanılabilecek iyi bilinen bir pertürbasyon yöntemidir. Hidrostatik basınç termodinamik dengeyi daha düşük azı dişi hacmi ile durum(lar)a doğru yönlendirir. Artan basınç, bu nedenle, küresel proteinlerin stabilitesini ve protein komplekslerinin oligomerizasyon dengesini ince bir şekilde ayarlama fırsatları sunar. Yüksek basınçlı NMR deneyleri, basınç pertürbasyonunun ince stabilite ayar yeteneğini ve çözelti NMR spektroskopisi tarafından sunulan saha çözünürlüğünü birleştirerek globüler proteinlerin stabilitesini, katlama mekanizmalarını ve oligomerizasyon mekanizmalarını yöneten faktörlerin ayrıntılı bir şekilde karakterizasyonuna izin verir. Burada, 1 bar'dan 2,5 kbar'a kadar kaydedilen 2D 1H-15N deneyleri seti aracılığıyla bir proteinin yerel katlama stabilitesini araştırmak için bir protokol sunuyoruz. Bu tür deneylerin alınması ve analizi için gereken adımlar, hnRNPA1'in RRM2 etki alanında elde edilen verilerle gösterilmiştir.
Proteinlerin ve protein komplekslerinin daha yüksek enerjili, seyrek nüfuslu konformasyon durumlarının birçok biyolojik yolda kilit rol oynadığı uzun zamandır kabul edilmektedir1,2,3. Carr-Purcell-Meiboom-Gill (CPMG)4,Kimyasal Değişim Doygunluk Transferi (Tsİ)5ve karanlık durum değişim doygunluk transferi (DEST)6 darbe dizisi (diğerleri arasında) tabanlı deneyler sayesinde, çözelti NMR spektroskopisi geçici uygun durumları karakterize etmek için bir seçim yöntemi olarak ortaya çıkmıştır7. Bu deneylerle birlikte, daha yüksek enerji konformasyonel alt durumlarının göreli popülasyonunu artırmak için sıcaklık, pH veya kimyasal denatürantlar gibi pertürbasyonlar da tanıtılabilir. Benzer şekilde, protein dengesi de yüksek hidrostatik basınç uygulanarak bozılabilir. İlgili konformasyon değişiklikleriyle ilişkili hacim değişiminin büyüklüğüne bağlı olarak, basıncın birkaç yüz ila birkaç bin çubuk artması, daha yüksek bir enerji durumunu önemli ölçüde stabilize edebilir veya bir proteinintamamen ortayaçıkmasına neden olabilir 8 ,9,10. Protein NMR spektrumu tipik olarak hidrostatik basınçla iki tür değişiklik gösterir: (i) kimyasal kayma değişiklikleri ve (ii) pik yoğunluk değişiklikleri. Kimyasal kayma değişiklikleri, protein yüzey suyu arayonundaki değişiklikleri ve/veya protein yapısının hızlı bir zaman ölçeğinde (NMR zaman ölçeğine göre) yerel sıkıştırmasını yansıtır11. Büyük doğrusal olmayan kimyasal kaymalar gösteren çapraz geçişler basınç bağımlılığı, daha yüksek enerji konformasyon durumlarının varlığını gösterebilir12,13. Öte yandan, pik yoğunluk değişiklikleri, katlanmış/katlanmış durum popülasyonlarındaki değişiklikler gibi yavaş bir zaman ölçeğinde büyük konformasyon geçişlerine işaret eder. Katlanır ara maddelerin veya daha yüksek enerji durumlarının varlığı, belirli bir proteinin farklı kalıntıları için ölçülen açma üzerine hacim değişiminin büyüklüğündeki büyük varyasyonlardan tespit edilebilir14,15,16,17. Deneyimlerimize dayanarak, tipik olarak iki durumlu klasörler olarak sınıflandırılan küçük proteinler bile, yerel katlama stabiliteleri hakkında yararlı bilgiler sağlayan basınca karşı tekdüze olmayan yanıtlar sergiler. Burada açıklanan, heterojen nükleer ribonükleoprotein A1'in(hnRNPA1) izole RNA tanıma motifi 2'yi (RRM2) model protein olarak kullanarak, amide tepe yoğunluğu ve 1 H kimyasal kayma basınç bağımlılığının kazanılması ve analizi için bir protokoldür.
NOT: Burada açıklanan protokol, (i) 2,5 kbar dereceli alüminyum sertleştirilmiş zirkonya tüpü18,(ii) NMR spektrumunun analizi için SPARKY19 yazılımı ve (iii) bir eğri uydurma yazılımına sahip yüksek basınçlı bir pompa ve hücre gerektirir.
1. Numune hazırlama, yüksek basınç hücresinin montajı ve deneylerin ayarlanması.
2. Yüksek basınçlı NMR deneylerinin kaydedilme
3. Tepe yoğunluğu değişikliklerini analiz etme
4. Kimyasal kayma değişikliklerinin analizi
Burada açıklanan protokol, 2,5 kbar aralığında (%>90) neredeyse tamamen açılan hnRNPA1'in (kalıntılar 95-106) ikinci RNA tanıma motifi olan RRM2'nin basınç bağımlılığını araştırmak için kullanılmıştır. 1 H-15N spektrumları 1 bar, 500 bar, 750 bar, 1 kbar, 1.5 kbar, 2 kbar ve 2.5 kbar 'da toplanarak toplandırıldı (Şekil 2). Yerel çapraz uçların hiçbiri 2,5 kbar'daki gürültü seviyesinin üzerinde görünmediği için, karşılık gele...
Bu çalışmada, protein yapısal ve termodinamik yanıtlarının basınç pertürbasyonuna araştırılması için uygulanan bir protokol ayrıntılı olarak yer alıyor. Burada RRM2'de kaydedilen yüksek basınç deneyleri, ΔVU değerlerinde, tamamen işbirliğine bağlı olmayan açılmanın göstergesi olan büyük varyasyonların nispeten küçük bir tek alan proteininde bulunabileceğini göstermektedir. Benzer bir tablo basınç altında 1H kimyasal kayma değişikliklerinin analizinden ort...
Tüm yazarlar makaleyi okudu ve onayladı. Çıkar çatışması ilan değiller.
Bu çalışma Roy J. Carver Hayır Kurumu'ndan Julien Roche'a fonlar tarafından desteklendi. J. D. Levengood ve B. S. Tolbert'e RRM2 örneğini sağladıkları için teşekkür ederiz.
Name | Company | Catalog Number | Comments |
Bruker Nmr Cell 2.5 Kbar | Daedalus Innovations LLC | NMRCELL-B | |
Sparky3 | University of California San Francisco, CA | N/A | |
Xtreme-60 Syringe pump | Daedalus Innovations LLC | XTREME-60 |
Bu JoVE makalesinin metnini veya resimlerini yeniden kullanma izni talebi
Izin talebiThis article has been published
Video Coming Soon
JoVE Hakkında
Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır