JoVE Logo

Sign In

多直升机空气动力学:六轴飞行器上的特征推力

Overview

资料来源:普拉申·夏尔马和埃拉·阿特金斯,密歇根大学航空航天工程系,安阿伯,密歇根州

多直升机正在成为各种爱好和商业应用的流行。它们通常可作为四轴飞行器(四个推进器)、六轴飞行器(六个推进器)和八轴飞行器(八个推进器)配置。在这里,我们描述了一个实验过程来描述多直升机的性能。测试了提供推进单元冗余的模块化小型六轴器平台。使用测功机和不同的螺旋桨和输入命令确定单个静态电机推力。然后,此静态推力表示为电机 RPM 的函数,其中转速由电机功率和控制输入确定。然后,六轴飞行器安装在5'x 7'低速再循环风洞的称重传感器测试台上,其空气动力学提升和阻力部件在飞行过程中以不同的运动信号、自由流动速度和攻击角度进行特征。

六轴飞行器之所以被选中用于这项研究,是因为它能够适应电机(推进单元)故障,如《克洛蒂耶1号》所报道的。除了推进系统的冗余外,安全飞行也需要选择高可靠性部件,特别是对于任务人口过剩的地区。在《安帕地斯2》中,作者讨论了多轴飞行器部件的最佳选择,如电机、叶片、电池和电子速度控制器。贝尔沙斯基3号也进行了类似的研究,该研究的重点是正确选择螺旋桨系统,以满足任务要求。除了部件的冗余和可靠性外,了解车辆性能对于确保遵守飞行包络限制和选择最有效的设计也至关重要。

Procedure

该协议具有六轴飞行器推力和空气动力学特性。对于此实验,我们使用了六轴飞行器的商用现成组件,详情见表 2。对于飞行控制器,我们选择了一个开源自动驾驶仪 Librepilot,9,因为它提供了灵活性来控制向六轴飞行器发出的单个电机命令。

安装称重传感器和六轴飞行器的试验台是使用层压胶合板在内部制造的,如图2所示。设计测试台时,请注意,必?...

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Results

测功机测试

图5-6中,这些图分别说明了推力和扭矩的变化,增加了电机转速。从这些图中,可以确定多直升机悬停所需的最小电机转速。一个显示来自多个螺旋桨数据的图可以从夏尔马12获得。此外,可以清楚地观察到推力与转速和力矩与转速之间的二次关系,这些关系在方程 (1) 和 (2) 中描述。使用此二次关系,我们可以确定 6040

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Application and Summary

在这里,我们描述了一个协议来描述作用于六轴飞行器的空气动力学力。该协议可以直接应用于其他多转子配置。需要正确描述空气动力学力,以改善控制设计,了解飞行包络极限,并估计湘13的局部风场。在使用没有 RPM 感应的低成本电子速度控制器 (ESC) 时,基于功耗和节气门命令确定电机转速的协议具有直接应用来估计转速和推力。 最后,如卡迈勒14所述,应用先进的控制...

Log in or to access full content. Learn more about your institution’s access to JoVE content here

References
  1. Clothier, R.A., and Walker, R.A., “Safety Risk Management of Unmanned Aircraft Systems,” Handbook  of Unmanned Aerial Vehicles, Springer, 2015, pp. 2229–2275.
  2. Ampatis, C., and Papadopoulos, E., “Parametric Design and Optimization of Multi-rotor Aerial Vehicles,” Applications of Mathematics and Informatics in Science and Engineering, Springer, 2014, pp. 1–25. 

  3. Bershadsky, D., Haviland, S., and Johnson, E. N., “Electric Multirotor UAV Propulsion System Sizing for Performance Prediction and Design Optimization,” 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., 2016.
  4. Bangura, M., Melega, M., Naldi, R., and Mahony, R., “Aerodynamics of Rotor Blades for Quadrotors,” arXiv preprint arXiv:1601.00733, 2016
  5. Ducard, G., and Minh-Duc Hua. "Discussion and Practical Aspects on Control Allocation for a Multi-rotor Helicopter." Conf. on Unmanned Aerial Vehicle in Geomatics, 2011.
  6. Powers C., Mellinger D., Kumar V. “Quadrotor Kinematics and Dynamics” In: Handbook of Unmanned Aerial Vehicles. Springer, 2015
  7. McClamroch, N. Harris. “Steady Aircraft Flight and Performance.” Princeton University Press, 2011.
  8. Quan, Q., “Introduction to Multicopter Design and Control”, Springer Singapore, 2017.
  9. LibrePilot, https://www.librepilot.org/site/index.html
  10. Foster, J. and Hartman, D., “High-Fidelity Multi-Rotor Unmanned Aircraft System Simulation Development for Trajectory Prediction under Off-Nominal Flight Dynamics,” Proc. Air Transportation Integration & Operations (ATIO) Conference, AIAA, 2017. 
  11. Russell, Carl R., et al. "Wind Tunnel and Hover Performance Test Results for Multicopter UAS Vehicles," 2016.
  12. Sharma, P. and Atkins, E., “An Experimental Investigation of Tractor and Pusher Hexacopter Performance,” Proc. AIAA Aviation Conference, AIAA, June 2018. (to appear)
  13. Xiang, X., et al. "Wind Field Estimation through Autonomous Quadcopter Avionics." 35th AIAA/IEEE Digital Avionics Systems Conference (DASC), IEEE, 2016.
  14. Kamel, M., et al. "Model Predictive Control for Trajectory Tracking of Unmanned Aerial Vehicles using Robot Operating System." Robot Operating System (ROS). Springer, Cham, 2017, 3-39.
Tags

Skip to...

0:01

Concepts

3:01

Dynamometer Experiment

4:18

Static Text

5:51

Dynamic Thrust Test

7:57

Results

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved