JoVE Logo
Faculty Resource Center

Sign In

0:01

Concepts

4:04

Sample Collection and Preparation

7:01

Data Analysis and Results

Criando uma coluna de Winogradsky: um método para enriquecer as espécies microbianas em uma amostra de sedimento

Fonte: Elizabeth Suter1, Christopher Corbo1, Jonathan Blaize1
1 Departamento de Ciências Biológicas, Wagner College, 1 Campus Road, Staten Island NY, 10301

A coluna Winogradsky é um ecossistema em miniatura e fechado usado para enriquecer comunidades microbianas de sedimentos, especialmente aquelas envolvidas no ciclismo de enxofre. A coluna foi usada pela primeira vez por Sergei Winogradsky na década de 1880 e desde então tem sido aplicada no estudo de muitos microrganismos diversos envolvidos na biogeoquímica, como fotossintingesizers, oxidantes de enxofre, redutores de sulfato, methanogens, oxidantes de ferro, ciclodificadores de nitrogênio e muito mais (1,2).

A maioria dos microrganismos na Terra são considerados inculturais,o que significa que eles não podem ser isolados em um tubo de ensaio ou em uma placa de petri (3). Isso se deve a muitos fatores, incluindo que os microrganismos dependem de outros para certos produtos metabólicos. As condições em uma coluna de Winogradsky imitam de perto o habitat natural de um microrganismo, incluindo suas interações com outros organismos, e permitem que eles sejam cultivados em laboratório. Por isso, essa técnica permite que os cientistas estudem esses organismos e entendam como eles são importantes para os ciclos biogeoquímicos da Terra sem ter que cultivá-los isoladamente.

Os ambientes da Terra estão cheios de microrganismos que prosperam em todos os tipos de habitats,como solos, água oceânica, nuvens e sedimentos em alto mar. Em todos os habitats, os microrganismos dependem uns dos outros. À medida que um microrganismo cresce, ele consome substratos particulares, incluindo combustíveis ricos em carbono, como açúcares, bem como nutrientes, vitaminas e gases respiratórios como oxigênio. Quando esses recursos importantes se esgotam, diferentes microrganismos com diferentes necessidades metabólicas podem então florescer e prosperar. Por exemplo, na coluna Winogradsky, os micróbios primeiro consomem o material orgânico adicionado enquanto esgotam o oxigênio nas camadas inferiores da coluna. Uma vez que o oxigênio é usado, organismos anaeróbicos podem então assumir e consumir diferentes materiais orgânicos. Esse desenvolvimento consecutivo de diferentes comunidades microbianas ao longo do tempo é chamado de sucessão (4). A sucessão microbiana é importante em uma coluna winogradsky, onde a atividade microbiana altera a química do sedimento, que então afeta a atividade de outros micróbios e assim por diante. Muitos microrganismos em solos e sedimentos também vivem ao longo de gradientes,que são zonas transitórias entre dois tipos diferentes de habitats baseados nas concentrações de substratos (5). No ponto correto no gradiente, um micróbio pode receber quantidades ideais de diferentes substratos. À medida que uma coluna winogradsky se desenvolve, ela começa a imitar esses gradientes naturais, particularmente em oxigênio e sulfeto (Fig. 1).

Figure 1
Figura 1: Uma representação dos gradientes de oxigênio (O2) e sulfeto (H2S) que se desenvolvem em uma coluna winogradsky.

Em uma coluna winogradsky, lama e água de um lago ou pântano são misturados em uma coluna transparente e permitidos a incubação, tipicamente à luz. Substratos adicionais são adicionados à coluna para dar à comunidade fontes de carbono, geralmente sob a forma de celulose, e enxofre. Fotossintificadores normalmente começam a crescer nas camadas superiores do sedimento. Esses microrganismos fotossintéticos são em grande parte compostos por cianobactérias,que produzem oxigênio e aparecem como uma camada verde ou marrom-vermelha (Fig. 2, Tabela 1). Enquanto a fotossíntese produz oxigênio, o oxigênio não é muito solúvel em água e diminui abaixo dessa camada (Fig. 1). Isso cria um gradiente de oxigênio, variando de altas concentrações de oxigênio nas camadas superiores a zero oxigênio nas camadas inferiores. A camada oxigenada é chamada de camada aeróbica e a camada sem oxigênio é chamada de camada anaeróbica.

Na camada anaeróbica, muitas comunidades microbianas diferentes podem proliferar dependendo do tipo e quantidade de substratos disponíveis, da fonte dos micróbios iniciais e da porosidade do sedimento. No fundo da coluna, organismos que aeróbios quebram matéria orgânica podem prosperar. A fermentação microbiana produz ácidos orgânicos a partir da quebra da celulose. Esses ácidos orgânicos podem então ser usados por redutores de sulfato,que oxidam esses orgânicos usando sulfato, e produzem sulfeto como subproduto. A atividade dos redutores de sulfato é indicada se o sedimento ficar preto, pois o ferro e o sulfeto reagem para formar minerais pretos de ferro-sulfeto (Fig. 2, Tabela 1). O sulfeto também difunde para cima, criando outro gradiente no qual as concentrações de sulfeto são altas na parte inferior da coluna e baixas na parte superior da coluna (Fig. 1).

Perto do meio da coluna, os oxidantes de enxofre aproveitam o fornecimento de oxigênio de cima e sulfeto de baixo. Com a quantidade certa de luz, oxidantes de enxofre fotossintéticos podem se desenvolver nessas camadas. Esses organismos são conhecidos como bactérias de enxofre verde e roxo , e muitas vezes aparecem como filamentos e manchas verde, roxo ou roxo-vermelho (Fig. 2, Tabela 1). As bactérias de enxofre verde têm maior tolerância ao sulfeto e geralmente se desenvolvem na camada diretamente abaixo das bactérias do enxofre roxo. Acima das bactérias de enxofre roxo, bactérias não-enxofre roxas também podem se desenvolver. Esses organismos fotossintestêm usando ácidos orgânicos como doadores de elétrons em vez de sulfeto e muitas vezes aparecem como uma camada vermelha, roxa, laranja ou marrom. Oxidantes de enxofre não fotosintéticos podem desenvolver-se acima das bactérias não-enxofre roxas, e estes geralmente aparecem como filamentos brancos (Fig. 2, Tabela 1). Além disso, bolhas também podem se formar na coluna Winogradsky. Bolhas nas camadas aeróbicas indicam a produção de oxigênio pelas cianobactérias. Bolhas nas camadas anaeróbicas são provavelmente devido à atividade de metanogens, organismos que aeróbicamente quebram matéria orgânica e formam metano como subproduto.

Posição na Coluna Grupo funcional Exemplos de organismos Indicador Visual
Início Fotossintificadores Cianobactérias Camada verde ou marrom-avermelhada. Às vezes bolhas de oxigênio.
Oxidantes de enxofre não fotosintéticos Beggiatoa Camada branca.
Bactérias não-enxofre roxas Rhodomicrobium, Rhodospirilum, Rhodopseuodmonas Camada vermelha, roxa, laranja ou marrom.
Bactérias de enxofre roxo Chromatium Camada roxa ou roxa-vermelha.
Bactérias de enxofre verde Clorobio Camada verde.
Bactérias redutoras de sulfato Desulfovibrio, Desulfotomaculum, Desulfobacter, Desulfuromonas Camada preta.
Fundo Methanogênios Metanoococcus Às vezes bolhas de metano.

Tabela 1: Os principais grupos de bactérias que podem aparecer em uma coluna clássica de Winogradsky, de cima a baixo. Exemplos de organismos de cada grupo são dados, e os indicadores visuais de cada camada de organismos são listados. Baseado em Perry et al. (2002) e Rogan et al. (2005).

1. Configuração

  1. Para configurar uma coluna Winogradsky, você precisará de alguns suprimentos básicos:
    • Uma pá, balde e garrafa para coletar as amostras no campo
    • Um vaso vertical e transparente, como um cilindro graduado ou garrafa de água plástica de cerca de 1L
    • Plástico e elásticos
    • grandes tigelas de mistura e colher grande para mexer
    • Uma fonte de enxofre (gema de ovo ou sulfato de cálcio)
    • Uma fonte de carbono orgânico (...

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Neste experimento, água e sedimentos foram coletados de um habitat de água doce. Duas colunas winogradsky foram construídas e permitidas a desenvolver: uma coluna clássica de Winogradsky incubada na luz à temperatura ambiente (Fig. 2A) e uma coluna winogradsky incubada no escuro à temperatura ambiente (Fig. 2B).

Figure 2B
Figura 2B: Uma foto da coluna clássica winogradsky (à esquerda), incubada...

Log in or to access full content. Learn more about your institution’s access to JoVE content here

A coluna Winogradsky é um exemplo de um ecossistema microbiano interdependente. Depois de misturar lama, água e substratos adicionais de carbono e enxofre em uma coluna vertical, o ecossistema estratificado deve estabilizar-se em zonas separadas e estáveis ao longo de várias semanas. Essas zonas são ocupadas por diferentes microrganismos que florescem em um determinado ponto ao longo do gradiente entre o sedimento rico em sulfeto no fundo e o sedimento rico em oxigênio no topo. Manipulando as condições e substrat...

Log in or to access full content. Learn more about your institution’s access to JoVE content here

  1. Zavarzin G. (2006). Winogradsky and modern microbiology. Microbiology 75(6): 501-511. doi: 10.1134/s0026261706050018
  2. Esteban DJ, Hysa B, and Bartow-McKenney C (2015). Temporal and Spatial Distribution of the Microbial Community of Winogradsky Columns. PLoS ONE 10(8): e0134588. doi:10.1371/journal.pone.0134588
  3. Lloyd KG, Steen AD, Ladau J, Yin J, and Crosby L. (2018). Phylogenetically novel uncultured microbial cells dominate Earth microbiomes. mSystems 3(5): e00055-18. doi:10.1128/mSystems.00055-18
  4. Anderson DC, and Hairston RV (1999). The Winogradsky Column & Biofilms: Models for Teaching Nutrient Cycling & Succession in an Ecosystem. The American Biology Teacher, 61(6): 453-459. doi: 10.2307/4450728
  5. Dang H, Klotz MG, Lovell CR and Sievert SM (2019) Editorial: The Responses of Marine Microorganisms, Communities and Ecofunctions to Environmental Gradients. Frontiers in Microbiology 10(115). doi: 10.3389/fmicb.2019.00115
  6. Stomp M, Huisman J, Stal LJ, and Matthijs HCP. (2007) Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME Journal. 1(4): 271-282. doi:10.1038/ismej.2007.59
  7. Perry JJ, Staley JT, and Lory S. (2002) Microbial Life, First Edition, published by Sinauer Associates
  8. Rogan B, Lemke M, Levandowsky M, and Gorrel T. (2005) Exploring the Sulfur Nutrient Cycle Using the Winogradsky Column. The American Biology Teacher, 67(6): 348-356. doi: 10.2307/4451860

Explore More Videos

Valor vazio
JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved