Sign In

The Movement of Organelles and Vesicles

In eukaryotic cells, cytoskeletal filaments such as actin, microtubules, and intermediate filaments form a mesh-like cytoskeletal network. These filaments serve as tracks for transporting cellular cargo. Specialized motor proteins use the chemical energy stored in adenosine triphosphate (ATP) for this transport. During interphase, microtubules are polarized, with the plus-end towards the cell periphery and the minus-end towards the cell center. Two microtubule-associated motor proteins, kinesin and cytoplasmic dynein, transport organelles and vesicles.

Transport via kinesins

Kinesin is a plus-end-directed, microtubule-associated motor protein made up of two heavy chains and two light chains. Kinesin motors are highly efficient as they undergo hundreds of ATP hydrolysis cycles without dissociating from the microtubules while transporting cellular cargos. During interphase, kinesins transport organelles and vesicles across the cell. The kinesins attach to specific vesicles or organelles with the help of the receptor domain present in its light chain. Some kinesin motor proteins have also shown preferential binding for post-translationally modified microtubules. For example, acetylation and detyrosination of microtubules alter the binding and mobility of kinesin-1. This selective binding plays a crucial role in the axonal cargo transport within the neurons.

Transport via dyneins

Dyneins are minus-end-directed motor proteins. These motors are responsible for carrying out crucial functions within the cell, such as the arrangement of axonal complex microtubule assemblies, signal transduction within the primary cilium, and positioning of Golgi apparatus near the cell center. Among the two dyneins present in the cell, cytoplasmic dynein is primarily responsible for transporting organelles and vesicles. Dynein has two globular heads attached to two stalks and intermediate and light chains that form the upper domain. ATP hydrolysis takes place within the globular heads. The movement of cytoplasmic dynein resembles walking, where one stalk moves ahead, followed by the other. The large cytoplasmic dynein molecule cannot bind directly to the organelles or vesicles; it requires an additional protein called dynactin. Dynactin has a short actin-like filament, Arp1. The Arp-1 domain recognizes and attaches to the receptor domain of the organelles or vesicles. The cytoplasmic dynein and dynactin are activated only after binding with a specific organelle or vesicle, forming a tripartite complex. The tripartite complex then transports the organelles and vesicles.

Tags
Organelle MovementVesicle MovementEukaryotic CellsCytoskeletal FilamentsActinMicrotubulesIntermediate FilamentsMotor ProteinsAdenosine Triphosphate ATPInterphaseKinesinCytoplasmic DyneinPlus end directedMinus end directedReceptor DomainAcetylationDetyrosinationAxonal Cargo Transport

From Chapter undefined:

article

Now Playing

The Movement of Organelles and Vesicles

Related Videos

3.4K Views

article

Microtubules

Related Videos

5.4K Views

article

Microtubule Instability

Related Videos

2.4K Views

article

Microtubule Formation

Related Videos

4.7K Views

article

Microtubule Associated Proteins (MAPs)

Related Videos

3.3K Views

article

Destabilization of Microtubules

Related Videos

2.2K Views

article

Microtubule Associated Motor Proteins

Related Videos

6.5K Views

article

Assembly of Complex Microtubule Structures

Related Videos

1.6K Views

article

Microtubules in Cell Motility

Related Videos

2.5K Views

article

Mechanism of Ciliary Motion

Related Videos

3.1K Views

article

Microtubules in Signaling

Related Videos

1.6K Views

article

Drugs that Stabilize Microtubules

Related Videos

1.6K Views

article

Drugs that Destabilize Microtubules

Related Videos

1.7K Views

article

The Structure of Intermediate Filaments

Related Videos

2.9K Views

article

Types of Intermediate Filaments

Related Videos

2.9K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved