Sign In

12.13 : X and Y Chromosomes

Among mammals, the gender of an organism is determined by the sex chromosomes. Humans have two sex chromosomes, X and Y. Every human diploid cell has 22 pairs of autosomes and one pair of sex chromosomes. A human female has two X chromosomes, while a male has one X chromosome and one Y chromosome.

The germline cells such as egg and sperm cells carry only half the number of chromosomes, i.e., 22 autosomes and one sex chromosome. All eggs have an X chromosome, while sperm cells can carry an X or Y chromosome. If a sperm carrying an X chromosome fuses with an egg, it produces a female embryo, whereas fusion of a sperm carrying a Y chromosome with an egg produces a male embryo.

The human genome sequencing project estimates that sex chromosomes have evolved from autosomes within the last 300 million years. Over time, the Y chromosome lost most autosomal sequences and currently has only around 55 genes. On the other hand, the X chromosome has over 1000 genes, most of which are unrelated to sex determination but include immune-related genes and several housekeeping genes. The mutations in the X- chromosome gene are often associated with X-linked disorders. These disorders are more prominent and lethal among males because they do not have another copy of the X chromosome to compensate for the genetic defects.

Additionally, an incorrect number of sex chromosomes can lead to genetic disorders. For example, females with Turner's syndrome have only one X chromosome instead of two. Such females are infertile with a broad chest and a wide, webbed neck. In contrast, Klinefelter syndrome (XXY) affects only males. Primary features include infertility, poor motor abilities, weaker muscle, among several other symptoms.

Tags
Sex ChromosomesX ChromosomeY ChromosomeGender DeterminationAutosomesGermline CellsEgg CellsSperm CellsFemale EmbryoMale EmbryoEvolution Of Sex ChromosomesGene Count On Sex ChromosomesX linked DisordersGenetic DefectsTurner s Syndrome

From Chapter 12:

article

Now Playing

12.13 : X and Y Chromosomes

Mendelian Genetics

15.2K Views

article

12.1 : Punnett Squares

Mendelian Genetics

10.7K Views

article

12.2 : Monohybrid Crosses

Mendelian Genetics

6.8K Views

article

12.3 : Dihybrid Crosses

Mendelian Genetics

4.6K Views

article

12.4 : Trihybrid Crosses

Mendelian Genetics

21.3K Views

article

12.5 : Law of Independent Assortment

Mendelian Genetics

4.7K Views

article

12.6 : Chi-square Analysis

Mendelian Genetics

31.0K Views

article

12.7 : Pedigree Analysis

Mendelian Genetics

10.0K Views

article

12.8 : Multiple Allele Traits

Mendelian Genetics

7.2K Views

article

12.9 : Incomplete Dominance

Mendelian Genetics

15.7K Views

article

12.10 : Lethal Alleles

Mendelian Genetics

10.5K Views

article

12.11 : Polygenic Traits

Mendelian Genetics

3.5K Views

article

12.12 : Background and Environment Affect Phenotype

Mendelian Genetics

6.2K Views

article

12.14 : The Y Chromosome Determines Maleness

Mendelian Genetics

6.0K Views

article

12.15 : The Ratio of X Chromosome to Autosomes

Mendelian Genetics

8.0K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved