Sign In

15.12 : Protein Modifications in the RER

Modification of secretory and transmembrane proteins entering the rough ER begins in the ER lumen. These modifications aid in protein folding and stabilize the acquired tertiary structure. Protein modifications in the rough ER co-occur at different stages of protein folding.

Broadly, these modifications can be categorized into four main categories — glycosylation, formation of disulfide bonds, assembly of protein subunits, and specific proteolytic cleavages like removal of signal sequences.

N-linked glycosylation of proteins

Almost half of the membrane and soluble proteins that transit via the rough ER are converted to a glycoprotein by the covalent addition of carbohydrate moieties, making it the most common ER modification. The oligosaccharide is attached to the asparagine residues of the tripeptide sequences Asn-X-Ser and Asn-X-Thr, where X can be any amino acid, except proline. The oligosaccharyltransferase membrane complex can catalyze glycosylation during cotranslational as well as post-translational protein translocation.

Glycosylation alters inherent physical properties of the protein. For instance, N-linked glycoproteins have improved thermodynamic kinetics and fold better as compared to their non-glycosylated counterparts. Glycosylation also increases protein stability by masking cleavage sites and hydrophobic stretches. Additionally, resident ER chaperones like BiP and lectins use the polypeptide glycosylation status to assess the correctness of protein folding before clearing it for exit from the ER.

Disulfide bonding of polypeptide chains

Disulfide bond formation is favored in an oxidizing environment and is formed predominantly in the rough ER lumen. However, a small fraction of disulfide bonds can form in the mitochondrial intermembrane space.

Protein disulfide isomerase (PDI) is the most abundant and best characterized oxidoreductase in the ER lumen. While the oxidized PDI forms disulfide linkage between cysteine residues, the reduced PDI acts as a proofreader, correcting inappropriately paired cysteine residues by rearranging the disulfide linkage. ER oxidoreductase 1, or Ero1, utilizes a significant fraction of molecular oxygen available in the cell to recycle oxidized PDI and generate hydrogen peroxide. Both PDI and Ero1 are responsible for the oxidative folding of proteins and maintaining redox homeostasis inside the ER.

Tags
Protein ModificationsRough ERGlycosylationDisulfide BondsProtein FoldingProtein StabilityER ChaperonesOxidative FoldingRedox Homeostasis

From Chapter 15:

article

Now Playing

15.12 : Protein Modifications in the RER

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

4.2K Views

article

15.1 : The Endoplasmic Reticulum

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

8.2K Views

article

15.2 : Smooth Endoplasmic Reticulum

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

4.5K Views

article

15.3 : Role of ER in the Secretory Pathway

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.6K Views

article

15.4 : Directing Proteins to the Rough Endoplasmic Reticulum

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

6.0K Views

article

15.5 : Protein Translocation Machinery on the ER Membrane

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.9K Views

article

15.6 : Cotranslational Protein Translocation

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

5.9K Views

article

15.7 : Post-translational Translocation of Proteins to the RER

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

4.7K Views

article

15.8 : Insertion of Single-pass Transmembrane Proteins in the RER

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

5.7K Views

article

15.9 : Insertion of Multi-pass Transmembrane Proteins in the RER

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

6.7K Views

article

15.10 : Tail-anchoring of Proteins in the ER Membrane

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

2.9K Views

article

15.11 : GPI Anchoring of Proteins in the ER Membrane

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.6K Views

article

15.13 : Protein Folding Quality Check in the RER

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.2K Views

article

15.14 : Export of Misfolded Proteins out of the ER

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.0K Views

article

15.15 : The Unfolded Protein Response

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.8K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved