Sign In

20.8 : Cyclic Processes And Isolated Systems

A thermodynamic system with zero heat exchange and work is an isolated system. For these systems, the internal energy remains constant.

In the case of a non-isolated system, the change in the internal energy is zero only if the process is cyclic. A thermodynamic process is considered cyclic if the system undergoes a series of changes and returns to its initial state.

Consider a cyclic process that returns to its initial state, undergoing a four-step process. The heat transfer along each path is 40 J, −80 J, −20 J, and 100 J. What is the net work done for this process?

The known quantities are the heat transfer for each step. The unknown quantity is the net amount of work done for this cyclic process.

According to the first law of thermodynamics, the change in the internal energy of the system is the difference between the net heat transfer into the system and the net work done by the system. Since the change in internal energy is zero, the net amount of work done equals the net heat transfer. The net heat transfer is the sum of the heat transfer for each path, equal to 40 J. Hence, the net work done is 40 J.

The net positive work done implies that the work done by the system is greater than the work done on the system. The heat energy supplied to the system is used by the system in doing the external work.

Tags
Thermodynamic SystemIsolated SystemCyclic ProcessInternal EnergyHeat ExchangeFirst Law Of ThermodynamicsNet Work DoneHeat TransferEnergy ChangeExternal Work

From Chapter 20:

article

Now Playing

20.8 : Cyclic Processes And Isolated Systems

The First Law of Thermodynamics

2.4K Views

article

20.1 : Thermodynamic Systems

The First Law of Thermodynamics

3.3K Views

article

20.2 : Work Done During Volume Change

The First Law of Thermodynamics

2.9K Views

article

20.3 : Path Between Thermodynamics States

The First Law of Thermodynamics

2.5K Views

article

20.4 : Heat and Free Expansion

The First Law of Thermodynamics

1.1K Views

article

20.5 : Internal Energy

The First Law of Thermodynamics

3.6K Views

article

20.6 : First Law of Thermodynamics

The First Law of Thermodynamics

3.0K Views

article

20.7 : First Law Of Thermodynamics: Problem-Solving

The First Law of Thermodynamics

1.7K Views

article

20.9 : Isothermal Processes

The First Law of Thermodynamics

2.9K Views

article

20.10 : Isochoric and Isobaric Processes

The First Law of Thermodynamics

2.7K Views

article

20.11 : Heat Capacities of an Ideal Gas I

The First Law of Thermodynamics

2.2K Views

article

20.12 : Heat Capacities of an Ideal Gas II

The First Law of Thermodynamics

2.1K Views

article

20.13 : Heat Capacities of an Ideal Gas III

The First Law of Thermodynamics

2.0K Views

article

20.14 : Adiabatic Processes for an Ideal Gas

The First Law of Thermodynamics

2.6K Views

article

20.15 : Pressure and Volume in an Adiabatic Process

The First Law of Thermodynamics

2.3K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved