JoVE Logo

Sign In

Understanding the chemistry between the reagents is necessary for performing any experiment. To this end, scientists have designed a tool called a ladder diagram, which is a graphical representation that helps illustrate the chemistry of a system.

A ladder diagram for acid-base equilibria consists of a vertical axis that represents pH and horizontal bars (steps on the ladder) that help position all the pKa values in the system. At equilibrium, the pH value of the system corresponds to one of the pKa values, which divide the system into more acidic and more basic regions. At pH values higher or lower than any given pKa value, i.e. when the system is not at equilibrium, the dominant species will correspond to the one written in that region of the diagram.

For example, the ladder diagram of the HF and F acid-base equilibria system shows a horizontal line at pH 3.17, which is the pKa value of HF. At pH values above 3.17, F predominates, whereas at pH values below 3.17, the HF concentration is higher.

The ladder diagram of this system can also be used to understand the effect of pH on the solubility of CaF2. The solubility of CaF2 can be increased by converting F into HF. In contrast, its solubility decreases if F dominantes. From the ladder diagram, it can be understood that pH values above 3.17 allow F to dominate, thereby decreasing the solubility of CaF2.

Tags
Ladder DiagramsAcid base EquilibriaPH RepresentationPKa ValuesChemical EquilibriumHF And F SystemSolubility Of CaF2Acidic And Basic RegionsDominant SpeciesGraphical Representation

From Chapter 2:

article

Now Playing

2.9 : Ladder Diagrams: Acid–Base Equilibria

Chemical Equilibria

338 Views

article

2.1 : Ionic Strength: Overview

Chemical Equilibria

892 Views

article

2.2 : Ionic Strength: Effects on Chemical Equilibria

Chemical Equilibria

963 Views

article

2.3 : Thermodynamics: Chemical Potential and Activity

Chemical Equilibria

664 Views

article

2.4 : Thermodynamics: Activity Coefficient

Chemical Equilibria

1.0K Views

article

2.5 : Chemical Equilibria: Redefining Equilibrium Constant

Chemical Equilibria

405 Views

article

2.6 : Factors Affecting Activity Coefficient

Chemical Equilibria

572 Views

article

2.7 : Chemical Equilibria: Systematic Approach to Equilibrium Calculations

Chemical Equilibria

462 Views

article

2.8 : Acid–Base Equilibria: Activity-Based Definition of pH

Chemical Equilibria

455 Views

article

2.10 : Ladder Diagrams: Redox Equilibria

Chemical Equilibria

349 Views

article

2.11 : Ladder Diagrams: Complexation Equilibria

Chemical Equilibria

254 Views

article

2.12 : Solubility Equilibria: Overview

Chemical Equilibria

434 Views

article

2.13 : Solubility Equilibria: Ionic Product of Water

Chemical Equilibria

834 Views

article

2.14 : Complexation Equilibria: Overview

Chemical Equilibria

442 Views

article

2.15 : Complexation Equilibria: The Chelate Effect

Chemical Equilibria

322 Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved