JoVE Logo

Sign In

Concept
Experiment

Agrobacterium-Mediated Genetic Transformation: A Method to Genetically Transform the Rice Genome via Genetically Engineered Agrobacterium tumefaciens


Transcript


Agrobacterium tumefaciens, a plant pathogenic bacterium, can be genetically engineered by introducing an artificially prepared Ti plasmid, carrying a gene of interest in its transfer DNA or T-DNA region, and a helper plasmid carrying the virulence or Vir genes for transferring the T-DNA into plant cells.

For Agrobacterium-mediated genetic transformation, begin with a young rice inflorescence and cut it into small pieces. Transfer the cuttings to a growth medium and incubate to facilitate the growth of the cuttings into an undifferentiated cell mass called a callus.

Now, transfer the callus to an Agrobacterium infiltration medium containing acetosyringone - a chemoattractant for Agrobacterium. Next, add a culture of genetically engineered Agrobacterium to the medium and incubate briefly.

The acetosyringone molecules activate the cell receptor protein - VirA - on the Agrobacterium membrane, which further mediates the phosphorylation of a transcriptional activator protein - VirG. Phosphorylated VirG moves toward the helper plasmid and activates the transcription of a cascade of virulence genes, including channel proteins and endonucleases - VirD1 and VirD2.

The channel proteins form a transport channel connecting the bacterial and plant cell, whereas the endonucleases bind to the border sequences in the Ti plasmid and cleave the T-DNA with VirD2, bound at one end. Thereafter, VirD2 directs the entry of T-DNA via the transport channel into the callus cells and facilitates its integration into the rice genome.

USAGE STATISTICS
JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved