RNA interference (RNAi) is a widely used technique in which double stranded RNA is exogenously introduced into an organism, causing knockdown of a target gene. In the nematode, C. elegans, RNAi is particularly easy and effective because it can be delivered simply by feeding the worms bacteria that express double stranded RNA (dsRNA) that is complementary to a gene of interest. First, this video will introduce the concept of RNA interference and explain how it causes targeted gene knockdown. Then, we will demonstrate a protocol for using RNAi in C. elegans, which includes preparation of the bacteria and RNAi worm plates, culturing of the worms, and how to assess the effects of RNAi on the worms. RNAi is frequently used to perform reverse genetic screens in order to reveal which genes are important to carry out specific biological processes. Furthermore, automated reverse genetic screens allow for the efficient knockdown and analysis of a large collection of genes. Lastly, RNAi is often used to study the development of C. elegans. Since its discovery, scientists have used RNAi to make tremendous progress on the understanding of many biological phenomena.
RNA interference, or RNAi, is a widely used technique in which double stranded RNA is introduced to an organism, resulting in targeted gene silencing. The Nobel winning discovery of RNA interference allowed researchers to silence any C. elegans gene in order to determine its function. We can induce RNAi in C. elegans by first preparing plates with E. coli that express target gene dsRNA, which the worms will eat. Then, 4th larval stage worms are transferred to the RNAi plates and allowed to lay eggs. A
Skip to...
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved