Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Atomic force microscopy (AFM) combined with scanning electrochemical microscopy (SECM), namely, AFM-SECM, can be used to simultaneously acquire high-resolution topographical and electrochemical information on material surfaces at nanoscale. Such information is critical to understanding heterogeneous properties (e.g., reactivity, defects, and reaction sites) on local surfaces of nanomaterials, electrodes and biomaterials.

Abstract

Scanning electrochemical microscopy (SECM) is used to measure the local electrochemical behavior of liquid/solid, liquid/gas and liquid/liquid interfaces. Atomic force microscopy (AFM) is a versatile tool to characterize micro- and nanostructure in terms of topography and mechanical properties. However, conventional SECM or AFM provides limited laterally resolved information on electrical or electrochemical properties at nanoscale. For instance, the activity of a nanomaterial surface at crystal facet levels is difficult to resolve by conventional electrochemistry methods. This paper reports the application of a combination of AFM and SECM, namely, AFM-SECM, to probe nanoscale surface electrochemical activity while acquiring high-resolution topographical data. Such measurements are critical to understanding the relationship between nanostructure and reaction activity, which is relevant to a wide range of applications in material science, life science and chemical processes. The versatility of the combined AFM-SECM is demonstrated by mapping topographical and electrochemical properties of faceted nanoparticles (NPs) and nanobubbles (NBs), respectively. Compared to previously reported SECM imaging of nanostructures, this AFM-SECM enables quantitative assessment of local surface activity or reactivity with higher resolution of surface mapping.

Introduction

Characterization of electrochemical (EC) behavior can provide critical insights into the kinetics and mechanisms of interfacial reactions in diverse fields, such as biology1,2, energy3,4, material synthesis5,6,7, and chemical process8,9. Traditional EC measurements including electrochemical impedance spectroscopy10, electrochemical noise methods11, galvan....

Protocol

1. Sample preparation

  1. Preparation of faceted Cu2O nanoparticles and deposition on silicon substrate
    1. Dissolve 0.175 g of CuCl2∙2H2O (99.9%) into 100 mL of deionized (DI) water to generate an aqueous solution of 10 mM CuCl2.
    2. Add 10.0 mL of 2.0 M NaOH and 10 mL of 0.6 M ascorbic acid dropwise into the CuCl2 solution.
    3. Heat the solution in a 250 mL round-bottom flask under constant stirring in a 55 °.......

Representative Results

Topography and current imaging of ONBs by AFM-SECM

Previous studies that characterized NBs with AFM only reported topography images to reveal the size and distribution of NBs immobilized on a solid substrate56,57. The experiments here revealed both morphological and electrochemical information. Individual oxygen nanobubbles (ONBs) can be clearly identified in Figure 9, which provides.......

Discussion

A combined AFM-SECM technique that enables high-resolution multimodal imaging has been described in this protocol. This technique allows for topography to be mapped simultaneously with the SECM current collected or mapped on single nanoparticles or nanobubbles. Experiments were performed using commercial probes. These probes were designed to provide chemical compatibility with a wide range of electrochemical environments, electrochemical performance, mechanical stability, and multiple-cycle handling18

Acknowledgements

This work is funded by the national science foundation (Award Number: 1756444) via Biological & Environmental Interfaces of Nano Materials, the USDA National Institute of Food and Agriculture, AFRI project [2018-07549] and Assistance Agreement No. 83945101-0 awarded by the U.S. Environmental Protection Agency to New Jersey Institute of Technology. It has not been formally reviewed by EPA. The views expressed in this document are solely those of authors and do not necessarily reflect those of the Agency. EPA does not endorse any products or commercial services mentioned in this publication. The authors also thank Undergraduate Research and Innovation program (URI) ....

Materials

NameCompanyCatalog NumberComments
Equipment
Atomic force microsopyBruker, CADimenison Icon
BipotentiostatCH Instruments, Inc.CHI 700E
Materials
Silicon waferTED PELLA, Inc.16013
Fresh gold platesBruker, CAmodel 119-017-307
PF-SECM-AFM probesBruker, CA990-050138
PF-SECM strain-release moduleBruker, CA840-012-724
PF-SECM Probe HolderBruker, CA900-050121
PF-SECM ChuckBruker, CAPF-SECM Chuck
PF-SECM O-ringBruker, CA598-000-106
PF-SECM cover glass, SECM CellBruker, CA900-050137
EC Cell AssyBruker, CA932-017-300
ESD Field ServiceBruker, CA490-000-066
PF-SECM BootBruker, CA900-050136
Spring connector blockBruker, CA900-050524
PFSECM TweezersBruker, CA
Cable, SECM Tip moduleBruker, CA468-050171
Ag wireBruker, CA249-000-056
Pt wireBruker, CA248-000-004
Hard sharp wireBruker, CATT-ECM10
Tubular ceramic membraneRefractonWFA0.1
Chemicals
Copper(II) chloride dihydrateACROS OrganicsAC315281000
Sodium HydroxideFisher ChemicalS318-100
Ascorbic AcidFisher ChemicalA61-25
EpoxyLoctiteInstant Mix
Potassium ChlorideFisher ChemicalP217-500
Hexaammineruthenium(III) chlorideACROS OrganicsAC363342500

References

  1. Shi, X., Qing, W., Marhaba, T., Zhang, W. Atomic Force Microscopy-Scanning Electrochemical Microscopy (AFM-SECM) for Nanoscale Topographical and Electrochemical Characterization: Principles, Applications and Perspectives. Electrochimica Acta. , 135472 (2019).
  2. Aazam, E. S., Ghoneim, M. M., El-Attar, M. A.

Explore More Articles

NanomaterialsAtomic Force MicroscopeScanning Electrochemical MicroscopeAFM SECMElectrochemical ActivityNanoparticlesNanobubblesSample PreparationRedox MediatorElectrochemical Sample CellESD Protection

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved