JoVE Logo
Faculty Resource Center

Sign In

Abstract

Engineering

Sample Preparation and Experimental Design for In Situ Multi-Beam Transmission Electron Microscopy Irradiation Experiments

Published: June 27th, 2022

DOI:

10.3791/61293

1Sandia National Laboratories, 2Los Alamos National Laboratory

Abstract

There is a need to understand materials exposed to overlapping extreme environments such as high temperature, radiation, or mechanical stress. When these stressors are combined there may be synergistic effects that enable unique microstructural evolution mechanisms to activate. Understanding of these mechanisms is necessary for the input and refinement of predictive models and critical for engineering of next generation materials. The basic physics and underlying mechanisms require advanced tools to be investigated. The in situ ion irradiation transmission electron microscope (I³TEM) is designed to explore these principles.

To quantitatively probe the complex dynamic interactions in materials, careful preparation of samples and consideration of experimental design is required. Particular handling or preparation of samples can easily introduce damage or features that obfuscate the measurements. There is no one correct way to prepare a sample; however, many mistakes can be made. The most common errors and things to consider are highlighted within. The I³TEM has many adjustable variables and a large potential experimental space, therefore it is best to design experiments with a specific scientific question or questions in mind.

Experiments have been performed on large number of sample geometries, material classes, and with many irradiation conditions. The following are a subset of examples that demonstrate unique in situ capabilities utilizing the I3TEM. Au nanoparticles prepared by drop casting have been used to investigate the effects of single ion strikes. Au thin films have been used in studies on the effects of multibeam irradiation on microstructure evolution. Zr films have been exposed to irradiation and mechanical tension to examine creep. Ag nanopillars were subjected to simultaneous high temperature, mechanical compression, and ion irradiation to study irradiation induced creep as well. These results impact fields including: structural materials, nuclear energy, energy storage, catalysis, and microelectronics in space environments.

Explore More Videos

Sample Preparation

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved