Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol covers a detailed analysis of peptidoglycan composition using liquid chromatography mass spectrometry coupled with advanced feature extraction and bioinformatic analysis software.

Abstract

Peptidoglycan is an important component of bacterial cell walls and a common cellular target for antimicrobials. Although aspects of peptidoglycan structure are fairly conserved across all bacteria, there is also considerable variation between Gram-positives/negatives and between species. In addition, there are numerous known variations, modifications, or adaptations to the peptidoglycan that can occur within a bacterial species in response to growth phase and/or environmental stimuli. These variations produce a highly dynamic structure that is known to participate in many cellular functions, including growth/division, antibiotic resistance, and host defense avoidance. To understand the variation within peptidoglycan, the overall structure must be broken down into its constitutive parts (known as muropeptides) and assessed for overall cellular composition. Peptidoglycomics uses advanced mass spectrometry combined with high-powered bioinformatic data analysis to examine peptidoglycan composition in fine detail. The following protocol describes the purification of peptidoglycan from bacterial cultures, the acquisition of muropeptide intensity data through a liquid chromatograph—mass spectrometer, and the differential analysis of peptidoglycan composition using bioinformatics.

Introduction

Peptidoglycan (PG) is a defining characteristic of bacteria that serves to maintain cell morphology, while providing structural support for proteins and other cellular components1,2. The backbone of PG is composed of alternating β-1,4-linked N-acetyl muramic acid (MurNAc) and N-acetyl glucosamine (GlcNAc)1,2. Each MurNAc possesses a short peptide bound at the ᴅ-lactyl residue that can be crosslinked to adjacent disaccharide-linked peptides (Figure 1A,B). This crosslinking produ....

Protocol

1. Peptidoglycan sample preparation

  1. Growth of bacterial cultures
    NOTE: The growth of the bacterial cultures will vary depending on the bacterial species and the growth conditions being examined. The experimental parameters to be tested will define the growth conditions.
    1. Grow bacterial cultures under growth conditions required for the bacterial strain and experimental design. Grow bacteria as triplicate cultures (biological replicates) i.e., three separate colonies per strai.......

Representative Results

Increased detection sensitivity of MS machinery coupled with high-powered peak recognition software has improved the ability to isolate, monitor, and analyze substance compositions of complex samples in very minute detail. Using these technological advancements, recent studies on peptidoglycan composition have begun to use automated LC-MS feature extraction techniques12,13,14,24 over older HPLC.......

Discussion

This protocol describes a method to purify peptidoglycan from bacterial cultures, process for LC-MS detection and analyze composition using bioinformatic techniques. Here, we focus on Gram-negative bacteria and some slight modification will be required to enable analysis of Gram-positive bacteria.

The preparation of muropeptides has remained virtually the same since it was first produced in the 1960s9,11,15.......

Acknowledgements

The authors would like to thank Dr. Jennifer Geddes-McAlister and Dr. Anthony Clarke for their contributions in refining this protocol. This work was supported by operating grants from CIHR awarded to C.M.K (PJT 156111) and a NSERC Alexander Graham Bell CGS D awarded to E.M.A. Figures were created on BioRender.com.

....

Materials

NameCompanyCatalog NumberComments
Equipment
C18 reverse phase column - AdvanceBio Peptide column (100 mm x 2.1 mm 2.7 µm)AgilentLC-MS data acquisition
Heating mantle controller, OptichemFisher50-401-788for 4% SDS boil
Heating Mantle, 1000mL HemisphericalFisherCG1000008for 4% SDS boil
Incubator, 37°Cfor sacculi purification and MS sample prep
Leibig condenser, 300MM 24/40,FisherCG121805for 4% SDS boil
LyophilizerLabconcofor lyophilization of sacculi
Magentic stirrerFisher90-691-18for 4% SDS boil
mass spectrometer Q-Tof model UHD 6530AglientLC-MS data acquisition
microcentrifuge filters, Nanosep MF 0.2 µmFisher50-197-9573cleanup of sample before MS injection
Retort standFisher12-000-102for 4% SDS boil
Retort clampFisherS02629for 4% SDS boil
round bottom flask - 1 liter pyrexFisher07-250-084for 4% SDS boil
Sonicator model 120FisherFB120for sacculi purification
Sonicator - micro tipFisherFB4422for sacculi purification
UltracentrifugeBeckmansacculi wash steps
Ultracentrifuge bottles, Ti45FisherNC9691797sacculi wash steps
Water supplyCityfor water cooled condenser
Software
ChemdrawCambridgesoftmolecular editor for muropeptide fragmentation prediction
ExcelMicrosoftviewing lists of annotated muropeptides, abundance, isotopic patterns, etc.
MassHunter AcquisitionAglientrunning QTOF instrument
MassHunter Mass Profiler ProfessionalAglientbioinformatic differential analysis
MassHunter Personal Compound Database and Library ManagerAglientmuropeptide m/z MS database
MassHunter ProfinderAglientrecursive feature extraction
MassHunter Qualitative analysisAglientviewing MS and MS/MS chromatograms
PrismGraphpadGraphing software
PerseusMax Plank Institute of Biochemistry1D annotation
Material
AcetonitrileFisherA998-4
Ammonium acetateFisherA637
AmylaseSigma-AldrichA6380
Boric acidFisherBP168-1
DNaseFisherEN0521
Formic acidSigma-Aldrich27001-500ML-R
LC-MS tuning mix - HP0321AgilentG1969-85000
Magnesium chlorideSigma-AldrichM8266
Magnesium sulfateSigma-AldrichM7506
Mutanolysin from Streptomyces globisporus ATCC 21553Sigma-AldrichM9901
Nitrogen gas (>99% purity)PraxairNI 5.0UH-T
Phosphoric acidFisherA242
Pronase E from Streptomyces griseusSigma-AldrichP5147
RNaseFisherEN0531
Sodium azideFisherS0489
Sodium borohydrideSigma-Aldrich452890
Sodium dodecyl sulfate (SDS)FisherBP166
Sodium hydroxideFisherS318
Sodium Phosphate (dibasic)FisherS373
Sodium Phosphate (monobasic)FisherS369
Stains-allSigma-AldrichE9379

References

  1. Vollmer, W., Blanot, D., de Pedro, M. A. Peptidoglycan structure and architecture. FEMS Microbiology Reviews. 32, 149-167 (2007).
  2. Pazos, M., Peters, K. Peptidoglycan. Sub-cellular Biochemistry. 92, 127-168 (2019).
  3. Typas, A., Banzhaf, M., Gross....

Explore More Articles

PeptidoglycanMass SpectrometryBioinformaticsPeptidoglycomicsSacculi ExtractionSDS TreatmentEnzymatic DigestionLiquid Chromatography mass Spectrometry

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved