A subscription to JoVE is required to view this content. Sign in or start your free trial.
We describe the reduction of reperfusion injury by 670 nm irradiation in a mouse model of ischemia and reperfusion by tourniquet placement. This 670 nm irradiation reduced the inflammatory response, decreased the number of proinflammatory macrophages, and increased the protective macrophages.
Tissue damage and necrosis from inflammatory processes are a consequence of ischemia reperfusion injury (IRI). In skeletal muscle, ischemia reduces the aerobic energy capacity of muscle cells, leading to adverse biochemical alterations and inflammation. The goal of this study is to show that exposure to near-infrared light (NIR) during a period of ischemia reduces IRI by decreasing necrosis and inflammation in addition to decreasing proinflammatory M1 and increasing protective M2 macrophages. C57/Bl6 mice underwent unilateral tourniquet-induced hindlimb ischemia for 3 h followed by reperfusion for either 15 or 30 min. Mice were randomly assigned to 3 groups. Group 1 underwent IRI with 30 min reperfusion. Group 2 underwent IRI with a 15 min reperfusion. Each group consisted of 50% no-NIR and 50% NIR-treated mice with exposure of 50 mW/cm2 for 5 min/1 h after tourniquet closure. Group 3 were sham animals anesthetized for 3 h omitting IRI.
Laser doppler flow imaging was performed on all mice to confirm ischemia and reperfusion. Flow data were expressed as the ratio of ischemic limb and the contralateral control. The mice were euthanized after reperfusion, and the quadriceps and gastrocnemius were harvested. Immunoprecipitation and western blot of macrophage-markers CD68 (M1) and CD206 (M2) were performed and normalized to CD14 expression. The expression of the inflammatory markers CXCL1 and CXCL5 was significantly reduced by NIR in the IRI group. A significant decrease in CD68 and an increase in CD206 expression was observed in animals receiving IR and NIR. Tissue necrosis was decreased by NIR in the IRI group, as visualized by 2,3,5-triphenyltetrazolium chloride (TTC) staining. The findings demonstrate that exposure to NIR reduced IRI and improved tissue survival. NIR reduced inflammation, decreased proinflammatory M1, and increased protective M2 macrophages. Exposure to NIR reduced inflammation and enhanced regeneration, leading to tissue protection following ischemia.
Ischemia reperfusion injury (IRI) is a clinical challenge seen following vascular injuries and the prolonged use of surgical tourniquets. Previous studies have shown that 60-90 min is the upper threshold for warm ischemia time, beyond which irreversible tissue damage can occur. More than any other single factor, the limitations of warm ischemia time limit the success and salvage of reimplantation of dysvascular limbs1,2.
In skeletal muscle, ischemia reduces the aerobic capacity of cells, leading to acute inflammation and adverse biochemical alterations. These effects are worsened by....
This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Institutional Animal Care and Use Committee (Protocol: AUA#1517). All research involving mice was conducted in conformity with PHS policy.
1. Tourniquet placement
NOTE: A tourniquet was placed to induce ischemia and achieve a blood-free surgical fie.......
Flow measurements confirmed ischemia and reperfusion
NIR light placement and the experimental protocol are depicted in Figure 1. A murine hindlimb ischemia model was developed and employed to assess the effect of NIR exposure on skeletal muscle IRI. As was expected, laser doppler flux imaging (Figure 2A) verified that the tourniquet was effective at inducing ischemia along with a return in blood flow to near-baseline for both NIR-treated (.......
This paper describes one of the first studies to focus on the reduction of reperfusion injury by NIR light treatment by changing the inflammatory response in the hindlimb. Ischemia reperfusion injury and NIR light treatment are not entirely novel. Other studies focused on ischemia reperfusion by NIR light. NIR light treatment has been successfully used in the reduction of myocardial infract size and reduction of renal damage after ischemia reperfusion injury. Quirk et al. reported a reduction in myocardial infarct size a.......
We thank the Department of Orthopedic Surgery for financing this study. We also thank Brian Lindemer and Grant Broeckel for their technical support.
....Name | Company | Catalog Number | Comments |
2,3,5-Triphenyltetrazolium | Sigma Aldrich | 17779-10X10ML-F | 1% solution |
4–15% Criterio TGX Stain-Free Protein Gel | BioRad | #5678084 | Tris-glycine extended gels |
4x Laemmli Sample Buffer - 1610747 | BioRad | 16110747 | |
670 nm light source | NIR Technologies | custom made | |
BCA Protein Assay Kit | Thermo Fisher | 23227 | |
BioRad ChemiDoc | Bio-Rad | Imaging system | |
Bio-Rad | |||
β-mercaptoethanol | BioRad | 1610710 | |
CXCL1 ELISA | R&D Systems | DY453-05 | |
CXCL5 ELISA | R&D Systems | DX000 | |
Forane | Baxter | 1001936040 | isoflurane inhalant |
goat anti-rabbit IgG-HRP | Santa Cruz Biotechnologies | sc-2004 | 1:10,000 dilution |
Ice Accu ice pack | |||
Laser doppler Imager | Moor | MOORLDI2-HIR | |
monoclonal CD14 antibody | Santa Cruz Biotechnologies | sc-515785 | 1:200 dilution |
monoclonal CD206 antibody | Santa Cruz Biotechnologies | sc-58986 | 1:200 dilution |
monoclonal CD68 antibody | Santa Cruz Biotechnologies | sc-20060 | 1:200 dilution |
Pierce Protein free (TBS) blocking buffer | blocking buffer | ||
polyclonal Chlorotyrosine Antibody | Hycult | HP5002 | 1:1,000 dilution |
Protein A/G PLUS-Agarose | Santa Cruz Biotechnologies | sc-2003 | |
Super Signal West Femto | ThermoFisher | 34095 | enhanced chemiluminescence reagent |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved