JoVE Logo

Sign In

Abstract

Engineering

Biplanar Videoradiography Dataset for Model-based Pose Estimation Development and New User Training

Published: May 11th, 2022

DOI:

10.3791/63535

1Mechanical & Materials Engineering, Queen’s University, 2Swedish School of Sport and Health Sciences, 3Karolinska Institute

Abstract

Measuring the motion of the small foot bones is critical for understanding pathological loss of function. Biplanar videoradiography is well-suited to measure in vivo bone motion, but challenges arise when estimating the rotation and translation (pose) of each bone. The bone's pose is typically estimated with marker- or model-based methods. Marker-based methods are highly accurate but uncommon in vivo due to their invasiveness. Model-based methods are more common but are currently less accurate as they rely on user input and lab-specific algorithms. This work presents a rare in vivo dataset of the calcaneus, talus, and tibia poses, as measured with marker-based methods during running and hopping. A method is included to train users to improve their initial guesses into model-based pose estimation software, using marker-based visual feedback. New operators were able to estimate bone poses within 2° of rotation and 1 mm of translation of the marker-based pose, similar to an expert user of the model-based software, and representing a substantial improvement over previously reported inter-operator variability. Further, this dataset can be used to validate other model-based pose estimation software. Ultimately, sharing this dataset will improve the speed and accuracy with which users can measure bone poses from biplanar videoradiography.

Explore More Videos

Keywords Biplanar Videoradiography

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved