JoVE Logo
Faculty Resource Center

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Engineering

Time-Resolved Photoluminescence Spectroscopy of Semiconductor Nanocrystals and Other Fluorophores

Published: August 4th, 2022

DOI:

10.3791/64101

1Department of Physics, University of Alberta

Time-resolved photoluminescence (TRPL) is a key technique for understanding the photophysics of semiconductor nanocrystals and light-emitting materials in general. This work is a primer for setting up and conducting TRPL on nanocrystals and related materials using single-photon-counting (SPC) systems. Basic sources of error in the measurement can be avoided by consideration of the experimental setup and calibration. The detector properties, count rate, the spectral response, reflections in optical setups, and the specific instrumentation settings for single photon counting will be discussed. Attention to these details helps ensure reproducibility and is necessary for obtaining the best possible data from an SPC system. The main aim of the protocol is to help a student of TRPL understand the experimental setup and the key hardware parameters one must generally comprehend in order to gain useful TRPL data in many common single-photon-counting setups. The secondary purpose is to serve as a condensed primer for the student of experimental time-resolved luminescence spectroscopy.

Explore More Videos

Time resolved Photoluminescence

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved