JoVE Logo
Faculty Resource Center

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Medicine

Biomechanical Analysis of Adjacent Segments after Spinal Fusion Surgery Using a Geometrically Parametric Patient-Specific Finite Element Model

Published: January 19th, 2024

DOI:

10.3791/66247

1Department of Spine Surgery, China-Japan Friendship Hospital, 2College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology

Abstract

This study aimed to perform a mechanical analysis of adjacent segments after spinal fusion surgery using a geometrically parametric patient-specific finite element model to elucidate the mechanism of adjacent segment degeneration (ASD), thereby providing theoretical evidence for early disease prevention. Fourteen parameters based on patient-specific spinal geometry were extracted from a patient's preoperative computed tomography (CT) scan, and the relative positions of each spinal segment were determined using the image match method. A preoperative patient-specific model of the spine was established through the above method. The postoperative model after L4-L5 posterior lumbar interbody fusion (PLIF) surgery was constructed using the same method except that the lamina and intervertebral disc were removed, and a cage, 4 pedicle screws, and 2 connecting rods were inserted. Range of motion (ROM) and stress changes were determined by comparing the values of each anatomical structure between the preoperative and postoperative models. The overall ROM of the lumbar spine decreased after fusion, while the ROM, stress in the facet joints, and stress in the intervertebral disc of adjacent segments all increased. An analysis of the stress distribution in the annulus fibrosus, nucleus pulposus, and facet joints also showed that not only was the maximum stress in these tissues elevated, but the areas of moderate-to-high stress were also expanded. During torsion, the stress in the facet joints and annulus fibrosus of the proximal adjacent segment (L3-L4) increased to a larger extent than that in the distal adjacent segment (L5-S1). While fusion surgery causes an overall restriction of motion in the lumbar spine, it also causes more load sharing by the adjacent segments to compensate for the fused segment, thus increasing the risk of ASD. The proximal adjacent segment is more prone to degeneration than the distal adjacent segment after spinal fusion due to the significant increase in stress.

Explore More Videos

Spinal Fusion

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved