JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Immunology and Infection

Quantifying Yersinia pseudotuberculosis Type III Secretion System Activity Following Iron Starvation and Anaerobic Growth

Published: May 31st, 2024

DOI:

10.3791/66642

1Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz

Abstract

A key virulence mechanism for many Gram-negative pathogens is the type III secretion system (T3SS), a needle-like appendage that translocates cytotoxic or immunomodulatory effector proteins into host cells. The T3SS is a target for antimicrobial discovery campaigns since it is accessible extracellularly and largely absent from non-pathogenic bacteria. Recent studies demonstrated that the T3SS of Yersinia and Salmonella are regulated by factors responsive to iron and oxygen, which are important niche-specific signals encountered during mammalian infection. Described here is a method for iron starvation of Yersinia pseudotuberculosis, with subsequent optional supplementation of inorganic iron. To assess the impact of oxygen availability, this iron starvation process is demonstrated under both aerobic and anaerobic conditions. Finally, incubating the cultures at the mammalian host temperature of 37 °C induces T3SS expression and allows quantification of Yersinia T3SS activity by visualizing effector proteins released into the supernatant. The steps detailed here offer an advantage over the use of iron chelators in the absence of iron starvation, which is insufficient for inducing robust iron starvation, presumably due to efficient Yersinia iron uptake and scavenging systems. Likewise, acid-washing laboratory glassware is detailed to ensure the removal of residual iron, which is essential for inducing robust iron starvation. Additionally, using a chelating agent is described to remove residual iron from media, and culturing the bacteria for several generations in the absence of iron to deplete bacterial iron stores. By incorporating standard protocols of trichloroacetic acid-induced protein precipitation, SDS-PAGE, and silver staining, this procedure demonstrates accessible ways to measure T3SS activity. While this procedure is optimized for Y. pseudotuberculosis, it offers a framework for studies in pathogens with similar robust iron uptake systems. In the age of antibiotic resistance, these methods can be expanded to assess the efficacy of antimicrobial compounds targeting the T3SS under host-relevant conditions.

Explore More Videos

Keywords Yersinia Pseudotuberculosis

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved