A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol describes the isolation of mouse endothelial cells from whole pancreas.
The pancreas is a vital organ for maintaining metabolic balance within the body, in part due to its production of metabolic hormones such as insulin and glucagon, as well as digestive enzymes. The pancreas is also a highly vascularized organ, a feature facilitated by the intricate network of pancreatic capillaries. This extensive capillary network is made up of highly fenestrated endothelial cells (ECs) important for pancreas development and function. Accordingly, the dysfunction of ECs can contribute to that of the pancreas in diseases like diabetes and cancer. Thus, researching the function of pancreatic ECs (pECs) is important not only for understanding pancreas biology but also for developing its pathologies. Mouse models are valuable tools to study metabolic and cardiovascular diseases. However, there has not been an established protocol with sufficient details described for the isolation of mouse pECs due to the relatively small population of ECs and the abundant digestive enzymes potentially released from the acinar tissue that can lead to cell damage and, thus, low yield. To address these challenges, we devised a protocol to enrich and recover mouse pECs, combining gentle physical and chemical dissociation and antibody-mediated selection. The protocol presented here provides a robust method to extract intact and viable ECs from the whole mouse pancreas. This protocol is suitable for multiple downstream assays and may be applied to various mouse models.
The pancreas, key to metabolic control and homeostasis, is a highly vascularized organ. The pancreas has both endocrine and exocrine functions, controlling the regulation of blood glucose and digestive enzymes, respectively. These two compartments are linked together by the extensive network of pancreatic blood vessels, facilitating the exchange and transport of oxygen, hormones, and enzymes. Critically, this dense capillary network penetrates the Islet of Langerhans, a cluster of hormone-regulating cells within the pancreas responsible for its endocrine function, consisting of the glucagon-secreting alpha (α) cells, the insulin-secreting beta (β) cells and ....
Tissue isolation was performed under the approved study protocol #17010 by the Institutional Animal Care and Use Committee (IACUC) of Beckman Research Institute, City of Hope (Duarte, California, USA). Here, we use Tie-2CreERT2;Rosa26-TdTomato mouse line in C57BL/6 background at 8 - 12 weeks of age. In this line, ECs are labeled with TdTomato when induced with tamoxifen as previously described34. However, this protocol can be adapted for all ages of adult mice with different genotypes and genetic .......
Following this protocol, approximately 2 x 106 live cells can be obtained when pooling 3 mouse pancreases, and 750,000 cells from a single mouse pancreas. To validate the enrichment of EC, we performed the following analyses: 1) quantitative PCR: compared to the flow-through (FT) samples (i.e., the non-CD31 antibody-bound fractions), the EC fractions had significantly higher levels of Pecam1 (encoding CD31) and Kdr (encoding VEGFR2), two EC marker genes33, and lower le.......
In this article, we present a protocol for enrichment and isolation of the pECs. Similar to previous EC isolation protocols from other tissues or organs, this protocol consists of three major processes, namely, physical dissociation, enzymatic digestion, and antibody-based EC enrichment. To address the unique challenges in processing the pancreas, we introduced several key adaptations and critical steps within our protocol: 1) a gentle one-step collagenase digestion with a short incubation time, 2) supplementation of hig.......
The authors thank Dr. Brian Armstrong at City of Hope, and Mindy Rodriguez at University of California, Riverside for technical assistance. This study was funded in part by grants from the NIH (R01 HL145170 to ZBC), Ella Fitzgerald Foundation (to ZBC), City of Hope (Arthur Riggs Diabetes Metabolism and Research Institute Innovation Award), and California Institute of Regenerative Medicine grant EDU4-12772 (to AT). Research reported in this publication included work performed in the Light Microscopy and Digital Imaging supported by the National Cancer Institute of the NIH under award number P30CA033572. Figure 1 and Figure 2 were ....
Name | Company | Catalog Number | Comments |
1.5 mL eppendorf | USA Scientific | 1615-5500 | |
10 cm dish | Genesee Scientific | 25-202 | |
25G needles | BD | 305145 | |
2X Taq Pro Universal SYBR qPCR Master Mix | Vazyme | Q712-03-AA | |
5 mL eppendorf | Thermo Fisher | 14282300 | |
6-well plate | Greiner Bio-One | 07-000-208 | |
70 µm strainer | Fisher | 22-363-548 | |
Anti-CD31-biotin | Miltenyi Biotech | REA784 | |
Bovine serum albumin heat shock treated | Fisher | BP1600-100 | |
CaCl2 | Fisher | BP510 | |
Centrifuge | Eppendorf | ||
Collagen Type 1, from calf skin | Sigma Aldrich | C9791 | Attachment reagent in the protocol |
Collagenase Type 1Â | Worthington Bio | LS004197 | |
Countess Automatic Cell Counter | Thermo Fisher | ||
DAPI | Thermo Fisher | D1306 | immunofluorescence |
Disposable Safety Scalpels | Myco Instrumentation | 6008TR-10 | |
DNAse IÂ | Roche | 260913Â | |
D-PBS (Ca2+,Mg2+) | Thermo Fisher | 14080055 | |
Ethanol | Fisher | BP2818-4 | |
Fetal bovine serum | Fisher | 10437028 | |
Incubator | Kept at 37 °C 5% CO2 | ||
LS Columns | Miltenyi Biotech | 130-042-401 | |
M199 | Sigma | M2520-1L | |
MACS MultiStand with the QuadroMACS Separator | Miltenyi Biotech | 130-042-303 | |
Medium 199 | Sigma Aldrich | M2520-10X | |
Microbeads anti-biotin | Miltenyi Biotech | 130-090-485 | |
Microscope | Leica | To assess cell morphology | |
Molecular Grade Water | Corning | 46-000-CM | |
NaCl | Fisher | S271-1 | |
New Brunswick Innova 44/44R Orbital shaker | Eppendorf | ||
PECAM1 (CD31) Antibody | Abcam | ab56299 | immunofluorescence |
PECAM1 (CD31) Antibody | R&D Systems | AF3628 | |
Phosphate Buffered Saline (10X) (no Ca2+,no Mg2+) | Genesee Scientific | 25-507-XB | |
Primer 36B4 Forward mouse | IDT | AGATTCGGGATATGCTGTTGGC | |
Primer 36B4 Revese mouse | IDT | TCGGGTCCTAGACCAGTGTTC | |
Primer Kdr Forward mouse | IDT | TCCAGAATCCTCTTCCATGC | |
Primer Kdr Reverse mouse | IDT | AAACCTCCTGCAAGCAAATG | |
Primer Nkx6.1 Reverse mouse | IDT | CACGGCGGACTCTGCATCACTC | |
Primer Nxk6.1 Forward mouse | IDT | CTCTACTTTAGCCCCAGCG | |
Primer PECAM1 Forward mouse | IDT | ACGCTGGTGCTCTATGCAAG | |
Primer PECAM1 Reverse mouse | IDT | TCAGTTGCTGCCCATTCATCA | |
RNase ZAP | Thermo Fisher | AM9780 | |
RNase-free water | Takara | RR036B | |
Sterile 12" long forceps | F.S.T | 91100-16 | |
Sterile fine forceps | F.S.T | 11050-10 | |
Sterile fine scissors | F.S.T | 14061-11 | |
Tissue Culture Dishes 2cm | Genesee Scientific | 25-260 | |
TRIzol reagent | Fisher | 15596018 | |
Trypan Blue | Corning | MT25900CI | |
Trypsin Inhibitor | Roche | 10109886001 | |
Tween-20 | |||
VE-Cadherin Antibody | Abcam | ab33168 | immunofluorescence |
Waterbath |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved