Abstract
Biology
Peripheral blood mononuclear cells (PBMCs) are a heterogeneous population of monocytes and lymphocytes. Cryopreserved PBMCs have stable viability in long-term storage, making them an ideal cell type for many downstream research purposes, including flow cytometry, immunoassays, and genome sequencing. Typically, PBMCs are isolated via density gradient centrifugation, however, it is a low-throughput workflow that is difficult and costly to scale. This article presents a high-throughput workflow using a magnetic bead-based PBMC isolation method that is quick to implement. Total cell concentration, viability, and population distribution with PBMCs obtained using density gradient isolation were compared, and cell viability and proportion of cell types were comparable for both techniques. Isolated PBMCs demonstrated over 70% viability up to 9 days after blood collection, although yield decreased by half after 5 days compared to PBMCs processed within 24 h of collection. In summary, this article describes a PBMC protocol that utilizes a bead-based approach to adapt to a high throughput workflow and demonstrates that both manual and automated bead-based methods can increase processing capacity and provide flexibility for various budgets.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved