JoVE Logo
Faculty Resource Center

Sign In

Abstract

Environment

Agarose-Based Model Ecosystem for Cultivating Methanotrophs in a Methane-Oxygen Counter Gradient

Published: September 6th, 2024

DOI:

10.3791/67191

1Department of Chemistry and the Henry Eyring Center for Cell and Genome Science, University of Utah

Abstract

Aerobic methane-oxidizing bacteria, known as methanotrophs, serve important roles in biogeochemical cycling. Methanotrophs occupy a specific environmental niche within methane-oxygen counter gradients found in soils and sediments, which influences their behavior on an individual and community level. However, conventional methods to study the physiology of these greenhouse gas-mitigating microorganisms often use homogeneous planktonic cultures, which do not accurately represent the spatial and chemical gradients found in the environment. This hinders scientists' understanding of how these bacteria behave in situ. Here, a simple, inexpensive model ecosystem called the gradient syringe is described, which uses semi-solid agarose to recreate the steep methane-oxygen counter gradients characteristic of methanotrophs' natural habitats. The gradient syringe allows for the cultivation of methanotrophic strains and the enrichment of mixed methane-oxidizing consortia from environmental samples, revealing phenotypes only visible in this spatially resolved context. This protocol also reports various biochemical assays that have been modified to be compatible with the semi-solid agarose matrix, which may be valuable to researchers culturing microorganisms within other agarose-based systems.

Explore More Videos

Environmental Sciences

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved