Sign In

Most organisms use photoreceptors to sense and respond to light. Examples of photoreceptors include bacteriorhodopsins and bacteriophytochromes in some bacteria, phytochromes in plants, and rhodopsins in the photoreceptor cells of the vertebral retina. The light-sensitive property of these receptors is because of the bound chromophores, such as bilin in the phytochromes and retinal in the rhodopsins.

Rhodopsins belong to the family of cell surface proteins called G-protein coupled receptors, which are involved in signal transduction across biological membranes. The rhodopsin family of proteins acquired divergent functions during evolution, such as acting as light receptors, ion pumps, and ion channels. One such subfamily of rhodopsins is channelrhodopsins or ChR that function as light-sensitive ion channels. Naturally occurring ChRs were first discovered in green microalgae, Chlamydomonas reinhardtii. Their role in algae involves coupling light to flagellar motion, thereby allowing the organism to acquire optimum light for photosynthesis and survival.

The structure of ChR protein includes seven membrane-spanning domains and a covalently bound light-sensitive protein called an all-trans-retinal chromophore. Upon illumination with blue light, ChR undergoes a conformational change and opens to allow the diffusion of cations, such as H+, Na+, K+, and Ca+, passively down their concentration gradient. The influx of ions across the membrane produces large photocurrents that activate the cell. Due to their fast activation by light, ChR have given rise to a new research approach in neurobiology called optogenetics.

Tags
PhotoreceptorsBacteriorhodopsinsBacteriophytochromesPhytochromesRhodopsinsChromophoresBilinRetinalG protein Coupled ReceptorsSignal TransductionRhodopsin FamilyChannelrhodopsinsChRLight sensitive Ion ChannelsChlamydomonas ReinhardtiiFlagellar MotionPhotosynthesisAll trans retinal ChromophorePhotocurrentsOptogenetics

From Chapter 14:

article

Now Playing

14.10 : Channel Rhodopsins

Channels and the Electrical Properties of Membranes

2.5K Views

article

14.1 : أكوابورينات

Channels and the Electrical Properties of Membranes

4.6K Views

article

14.2 : القنوات الأيونية غير المسورة

Channels and the Electrical Properties of Membranes

6.5K Views

article

14.3 : القنوات الأيونية ذات البوابات الترابطية

Channels and the Electrical Properties of Membranes

12.0K Views

article

14.4 : القنوات الأيونية ذات الجهد الكهربائي

Channels and the Electrical Properties of Membranes

7.7K Views

article

14.5 : القنوات الأيونية ذات البوابات الميكانيكية

Channels and the Electrical Properties of Membranes

6.0K Views

article

14.6 : هيكل الخلايا العصبية

Channels and the Electrical Properties of Membranes

12.1K Views

article

14.7 : إمكانات غشاء الراحة

Channels and the Electrical Properties of Membranes

16.6K Views

article

14.8 : الاضمحلال المحتمل للراحة

Channels and the Electrical Properties of Membranes

4.5K Views

article

14.9 : إمكانات العمل

Channels and the Electrical Properties of Membranes

7.2K Views

article

14.11 : التصحيح المشبك

Channels and the Electrical Properties of Membranes

5.2K Views

article

14.12 : نقاط الاشتباك العصبي الكهربائية

Channels and the Electrical Properties of Membranes

7.8K Views

article

14.13 : المشابك الكيميائية

Channels and the Electrical Properties of Membranes

8.3K Views

article

14.14 : الآثار الضادة والمثبطة للناقلات العصبية

Channels and the Electrical Properties of Membranes

9.2K Views

article

14.15 : تقلص العضلات

Channels and the Electrical Properties of Membranes

5.9K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved