A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
ويولد العديد من الباحثين بيانات "متوسطه الحجم" ، ومنخفضه السرعة ، ومتعددة الابعاد ، والتي يمكن ادارتها بكفاءة أكبر باستخدام قواعد بيانات بدلا من جداول للبيانات. هنا نقدم نظره عامه مفاهيمية لقواعد البيانات بما في ذلك تصور المعطيات متعددة الابعاد وربط الجداول في هياكل قاعده البيانات العلائقية وتخطيط خطوط أنابيب البيانات شبه المؤتمتة واستخدام قاعده بيانات لتوضيح معني البيانات.
يعتمد العلم علي مجموعات البيانات المعقدة بشكل متزايد من أجل التقدم ، ولكن أساليب أداره البيانات الشائعة مثل برامج الجداول الكترونيه غير كافيه لزيادة حجم هذه المعلومات وتعقيدها. وفي حين ان نظم أداره قواعد البيانات لديها القدرة علي تصحيح هذه المسائل ، فانها لا تستخدم عاده خارج مجالات الاعمال التجارية والمعلوماتية. ومع ذلك ، فان العديد من مختبرات البحوث تولد بالفعل "متوسطه الحجم" ، والسرعة المنخفضة ، والبيانات متعددة الابعاد التي يمكن ان تستفيد كثيرا من تنفيذ أنظمه مماثله. في هذه المقالة ، نقدم نظره عامه مفاهيمية تشرح كيفيه عمل قواعد البيانات والمزايا التي توفرها في تطبيقات هندسه الانسجه. واستخدمت بيانات الخلايا الليفية الهيكلية من الافراد الذين لديهم طفرة في التكييف لتوضيح الامثله في سياق تجريبي محدد. وتشمل الامثله تصور البيانات المتعددة الابعاد ، وربط الجداول في بنيه قاعده بيانات علائقية ، وتعيين خط أنابيب بيانات شبه مؤتمت لتحويل البيانات الاوليه إلى تنسيقات مهيكله ، وشرح بناء الجملة الأساسي للاستعلام. وقد استخدمت النتائج المستمدة من تحليل البيانات لإنشاء قطع من الترتيبات المختلفة والدلالة في تنظيم الخلية في بيئات الانحياز بين السيطرة الايجابيه من هاتشينسون-Gilford progeria ، واعتلال الصفيحة المعروفة ، وجميع المجموعات التجريبية الأخرى. المقارنة مع جداول البيانات ، كانت أساليب قاعده المعطيات فعاله بشكل كبير ، وسهله الاستخدام بمجرد اعدادها ، وسمحت بالوصول الفوري إلى مواقع الملفات الاصليه ، وزيادة صرامة البيانات. واستجابه لتركيز المعاهد الوطنية للصحة علي الصرامة التجريبية ، من المرجح ان العديد من المجالات العلمية ستعتمد في نهاية المطاف قواعد بيانات كممارسه شائعه بسبب قدرتها القوية علي تنظيم البيانات المعقدة بفعالية.
وفي عصر يكون فيه التقدم العلمي مدفوعا بالتكنولوجيا ، أصبح التعامل مع كميات كبيره من البيانات جزءا لا يتجزا من البحوث في جميع التخصصات. ويبرز ظهور مجالات جديده مثل البيولوجيا الحسابية وعلم الجينوم مدي اهميه الاستخدام الاستباقي للتكنولوجيا. هذه الاتجاات من المؤكد ان تستمر بسبب قانون مور والتقدم المطرد المكتسبة من التقدم التكنولوجي1,2. بيد ان أحدي النتائج هي الكميات المتزايدة من البيانات المتولدة التي تتجاوز قدرات أساليب التنظيم التي كانت صالحه من قبل. علي الرغم من ان معظم المختبرات الاكاديميه لديها موارد حسابيه كافيه للتعامل مع مجموعات البيانات المعقدة ، فان العديد من المجموعات تفتقر إلى الخبرة الفنية اللازمة لبناء أنظمه مخصصه مناسبه لتطوير الاحتياجات3. ويظل الحصول علي المهارات الضرورية لأداره وتحديث مجموعات البيانات هذه أمرا بالغ الاهميه لكفاءة سير العمل والمخرجات. ومن المهم سد الفجوة بين البيانات والخبرات من أجل المعالجة الفعالة لمجموعه واسعه من البيانات المتعددة الأوجه وأعاده تحديثها وتحليلها.
تعد قابليه التحجيم اعتبارا أساسيا عند معالجه مجموعات البيانات الكبيرة. البيانات الكبيرة ، علي سبيل المثال ، هي منطقه مزدهرة من البحوث التي تنطوي علي الكشف عن رؤى جديده من معالجه البيانات التي تتميز باحجام ضخمه ، وعدم التجانس الكبير ، ومعدلات عاليه من الجيل ، مثل الصوت والفيديو4،5. استخدام الأساليب المؤتمتة للتنظيم والتحليل إلزامي لهذا الحقل لمعالجه السيول من البيانات بشكل مناسب. غير ان العديد من المصطلحات التقنية المستخدمة في البيانات الضخمة ليست محدده بوضوح ، ويمكن ان تكون مربكه ؛ فعلي سبيل المثال ، غالبا ما تقترن بيانات "السرعة العالية" بملايين الإدخالات الجديدة في اليوم الواحد ، في حين ان بيانات "السرعة المنخفضة" قد تكون فقط مئات الإدخالات في اليوم ، كما هو الحال في اعداد المختبر الأكاديمي. علي الرغم من ان هناك العديد من النتائج المثيرة حتى الآن ليتم اكتشافها باستخدام البيانات الكبيرة, معظم المختبرات الاكاديميه لا تتطلب نطاق, قوه, وتعقيد هذه الأساليب لمعالجه الاسئله العلمية الخاصة بهم5. وفي حين انه من المشكوك في ان البيانات العلمية تزداد تعقيدا مع الوقت6، فان العديد من العلماء يواصلون استخدام أساليب التنظيم التي لم تعد تلبي احتياجاتهم من البيانات الاخذه في الاتساع. علي سبيل المثال ، تستخدم برامج جداول البيانات الملائمة بشكل متكرر لتنظيم المعلومات العلمية ، ولكن علي حساب كونها غير قابله للتطوير ، وعرضه للخطا ، والوقت غير فعال في المدى الطويل7،8. وعلي العكس من ذلك ، فان قواعد البيانات هي حل فعال للمشكلة لأنها قابله للتطوير ورخيصه نسبيا وسهله الاستخدام في معالجه مجموعات البيانات المتنوعة للمشاريع الجارية.
المخاوف الفورية التي تنشا عند النظر في مخططات تنظيم البيانات هي التكلفة ، وامكانيه الوصول ، والاستثمار في الوقت للتدريب والاستخدام. كثيرا ما تستخدم في إعدادات الاعمال, برامج قاعده البيانات هي أكثر اقتصادا, كونها اما غير مكلفه نسبيا أو مجانية, من التمويل المطلوب لدعم استخدام نظم البيانات الكبيرة. في الواقع ، توجد مجموعه متنوعة من البرامج المتاحة تجاريا والمفتوحة المصدر لإنشاء قواعد بيانات والحفاظ عليها ، مثل قاعده بيانات Oracle و MySQL و Microsoft (MS) الوصول9. كما سيتم تشجيع العديد من الباحثين لمعرفه ان العديد من الحزم الاكاديميه MS اوفيس تاتي مع MS الوصول وشملت, زيادة التقليل من الاعتبارات التكلفة. وعلاوة علي ذلك ، ما يقرب من جميع المطورين توفير وثائق واسعه علي الإنترنت وهناك عدد كبير من الموارد علي الإنترنت مجانا مثل Codecاديم ، W3Schools ، و SQLBolt لمساعده الباحثين علي فهم واستخدام لغة الاستعلام المهيكلة (SQL)10،11،12. مثل اي لغة برمجه ، تعلم كيفيه استخدام قواعد البيانات والتعليمات البرمجية باستخدام SQL يستغرق وقتا لإتقان ، ولكن مع الموارد وافره المتاحة عمليه واضحة وتستحق الجهد المستثمر.
ويمكن ان تكون قواعد البيانات أدوات قويه لزيادة امكانيه الوصول إلى البيانات وسهوله التجميع ، ولكن من المهم التمييز بين البيانات التي يمكن ان تستفيد أكثر من التحكم الأكبر في التنظيم. تشير الابعاد المتعددة إلى عدد الشروط التي يمكن تجميع القياس ضدها ، وقواعد البيانات هي الأكثر قوه عند أداره العديد من الشروط المختلفة13. وعلي العكس من ذلك ، المعلومات ذات الابعاد المنخفضة هي ابسط للتعامل باستخدام برنامج جداول البيانات; علي سبيل المثال ، تحتوي مجموعه البيانات التي تحتوي علي سنوات وقيمه لكل سنه علي تجميع واحد ممكن فقط (قياسات مقارنه بالسنوات). البيانات عاليه الابعاد مثل من الإعدادات السريرية تتطلب درجه كبيره من التنظيم اليدوي من أجل الحفاظ علي نحو فعال ، عمليه مملة وعرضه للخطا خارج نطاق برامج جداول البيانات13. قواعد بيانات غير علائقية (NoSQL) أيضا الوفاء مجموعه متنوعة من الأدوار ، في المقام الأول في التطبيقات حيث لا تنظم البيانات بشكل جيد في الصفوف والاعمده14. بالاضافه إلى كونها مفتوحة المصدر بشكل متكرر ، تتضمن هذه المخططات التنظيمية الاقترانات الرسوميه أو بيانات السلاسل الزمنيه أو البيانات المستندة. تتفوق NoSQL في قابليه التحجيم أفضل من SQL ولكن لا يمكن إنشاء استعلامات معقده بحيث تكون قواعد البيانات العلائقية أفضل في الحالات التي تتطلب التناسق والتوحيد والتغييرات غير المنتظمة واسعه النطاق15. قواعد البيانات هي الأفضل في تجميع وأعاده تحديث البيانات بشكل فعال في المجموعة الكبيرة من التشكيلات التي غالبا ما تكون مطلوبه في الإعدادات العلمية13,16.
وتشمل التطبيقات المماثلة الأخرى البيانات الجغرافية المكانية لأسره النهر ، والاستبيانات من الدراسات السريرية الطولية ، وظروف النمو الميكروبي في وسائل الاعلام النمو17،18،19. ويسلط هذا العمل الضوء علي الاعتبارات المشتركة وفائدة إنشاء قاعده بيانات مقرونة بخط أنابيب بيانات ضروري لتحويل البيانات الاوليه إلى اشكال منظمه. يتم توفير أساسيات واجات قاعده البيانات والترميز لقواعد البيانات في SQL وتوضيحها مع أمثله للسماح للآخرين للحصول علي المعرفة التي تنطبق علي بناء الأطر الاساسيه. وأخيرا ، فان عينه من مجموعه البيانات التجريبية تبين مدي سهوله وفعالية تصميم قواعد بيانات لتجميع البيانات المتعددة الأوجه بطرق متنوعة. وتوفر هذه المعلومات سياقا وتعليقا ونماذج لمساعده زملائنا العلماء علي الطريق نحو تنفيذ قواعد البيانات لتلبيه احتياجاتهم التجريبية الخاصة.
لأغراض إنشاء قاعده بيانات قابله للتطوير في المختبرات البحثية ، تم جمع البيانات من التجارب التي تستخدم خلايا الورم الليفي البشري علي مدي السنوات الثلاث الماضية. وينصب التركيز الرئيسي لهذا البروتوكول علي الإبلاغ عن تنظيم برامج حاسوبيه لتمكين المستخدم من تجميع البيانات وتحديثها وأدارتها باقصي قدر ممكن من التكلفة والوقت ، ولكن يتم توفير الطرق التجريبية ذات الصلة أيضا سياق.
الاعداد التجريبي
وقد تم وصف البروتوكول التجريبي لاعداد العينات سابقا20،21، وهو معروض بإيجاز هنا. وقد أعدت الثوابت بواسطة الطلاء الزجاجي مستطيله الشكل الشفتين مع خليط 10:1 من polydiميثيل siloxane (PDMS) وعامل العلاج ، ثم تطبيق 0.05 mg/mL fibronectin ، في اما غير المنظم (الانسيابية) أو 20 ميكرومتر خطوط مع 5 μm الفجوة ميكرومنقوشه الترتيبات (خطوط). تم البذر الخلايا الليفية في مرور 7 (أو مرور 16 للضوابط الايجابيه) علي الشفتين في الكثافات المثلي واليسار إلى النمو ل 48 h مع وسائل الاعلام التي يجري تغييرها بعد 24 ساعة. ثم تم إصلاح الخلايا باستخدام 4 ٪ بارافورمالدهيد (PFA) الحل و 0.0005 ٪ غير أيوني السطحي ، تليها الشفتين المناعية لنواه الخلية (4 ' ، 6 '-diaminodino-2-فينيليندولول [dapi]) ، الاكتين (اليكسا فلور 488 phalloidin) ، وفيبرونكتين (الأرنب بوليكلوكال المضادة للإنسان الفيبرونكتين جنيني). وصمه عار الثانوية ل الفيبرونكتين جنيني باستخدام الماعز مكافحه الأرنب الأجسام المضادة الأرانب (اليكسا فلور 750 الماعز المضادة للأرنب) تم تطبيقها وشنت وكيل الحفاظ علي جميع الشفتين لمنع يتلاشى الفلورسنت. واستخدم طلاء الأظافر لختم الشفتين علي الشرائح المجهر ثم غادر لتجف لمده 24 ساعة.
تم الحصول علي الصور الفلورية كما هو موضح سابقا20 باستخدام 40x النفط الغمر الهدف إلى جانب تهمه الرقمية إلى جانب الجهاز (CCD) الكاميرا التي شنت علي المجهر الميكانيكية مقلوب. وكانت عشره مجالات مختاره عشوائيا من العرض لكل كوفيرسليب في التكبير 40x ، المقابلة 6.22 بكسل/ميكرومتر القرار. واستخدمت رموز مكتوبه حسب العرف لقياس المتغيرات المختلفة من الصور التي تصف النوى ، وخيوط الإبطين ، وفيبرونكتين ؛ قيم المناظرة ، بالاضافه إلى معلمات التنظيم والهندسة ، تم حفظها تلقائيا في ملفات البيانات.
خطوط الخلايا
ويمكن الاطلاع علي وثائق أكثر شمولا بشان جميع خطوط خلايا البيانات النموذجية في المنشورات السابقة20. ولوصفها بإيجاز ، تمت الموافقة علي جمع البيانات وتمت الموافقة المستنيرة وفقا لمجلس المراجعة المؤسسية التابع لجامعه اوك ايرفين (2014-1253). تم جمع الخلايا الليفية البشرية من ثلاث عائلات من مختلف الاختلافات في الطفرة الجينية للامين A/C (Lmna): الطفرة الوراثية لموقع اللصق ( c. 357-2a > G)22 (الاسره الف) ؛ الطفرة هراء lmna (c. 736 c > T ، pQ246X) في اكسون 423 (الاسره ب) ؛ والطفرة lmna مغلط (c. 1003c > T, pR335W) في اكسون 624 (الاسره c). كما تم جمع الخلايا الليفية من الافراد الآخرين في كل أسره كعناصر التحكم السلبية المتعلقة بالطفرات ، والمشار اليها باسم "الضوابط" ، وتم شراء الآخرين كضوابط سلبيه غير ذات صله بالطفرات ، يشار اليها باسم "المانحين". كعنصر تحكم إيجابي ، تم شراء الخلايا الليفية من فرد مع هاتشينسون-غليفورد بروجيريا (hgps) ونميت من خزعة الجلد الماخوذه من المريض الإناث البالغ من العمر 8 سنوات مع hgps التي تمتلك الطفرة lmna G608G نقطه25. في المجموع ، تم اختبار الخلايا الليفية من 22 فردا واستخدامها كبيانات في هذا العمل.
أنواع البيانات
هذه المعلمة مساويه للقيمة القصوى لقيمه الطلب المتوسط لكل متجات التوجيه ، ويتم تعريفها بالتفصيل في المنشورات السابقة26،28. يتم تجميع هذه القيم في مجموعه متنوعة من التشكيلات المحتملة ، مثل القيم ضد العمر ، والجنس ، وحاله المرض ، وجود اعراض معينه ، الخ. يمكن العثور علي أمثله حول كيفيه استخدام هذه المتغيرات في قسم النتائج.
أمثله الرموز والملفات
يمكن تحميل رموز المثال والملفات الأخرى المستندة إلى البيانات أعلاه مع هذه الورقة ، ويتم تلخيص أسمائها وأنواعها في الجدول 1.
ملاحظه: راجع جدول المواد لإصدارات البرامج المستخدمة في هذا البروتوكول.
1-تقييم ما إذا كانت البيانات ستستفيد من نظام تنظيم قاعده بيانات
2. تنظيم بنيه قاعده البيانات
ملاحظه: قواعد البيانات العلائقية تخزين المعلومات في شكل جداول. يتم تنظيم الجداول في مخطط الصفوف والاعمده ، علي غرار جداول البيانات ، ويمكن استخدامها لربط معلومات التعريف داخل قاعده المعلومات.
3. اعداد وتنظيم خط الأنابيب
4. إنشاء قاعده البيانات والاستعلامات
ملاحظه: إذا كانت الجداول تخزن المعلومات في قواعد البيانات ، فان الاستعلامات هي طلبات إلى قاعده البيانات للحصول علي المعلومات المعطية لمعايير معينه. هناك طريقتان لإنشاء قاعده البيانات: بدءا من مستند فارغ أو بدءا من الملفات الموجودة. يظهر الشكل 4 استعلام نموذج باستخدام بناء جمله SQL الذي تم تصميمه للتشغيل باستخدام علاقات قاعده البيانات الموضحة في الشكل 2.
5-نقل جداول المخرجات إلى برنامج إحصائي لتحليل الاهميه
ابعاد متعددة للبيانات
في سياق المثال مجموعه البيانات المعروضة هنا ، المواضيع ، الموصوفة في قسم الأساليب ، يمكن تجميع النتائج من الضوابط والجهات المانحة معا كمجموعه السيطرة السلبية الشاملة (نورث كارولاينا) ، نظرا لافتقارها الجماعي إلى طفرات Lmna . وكان لكل...
المناقشة التقنية للبروتوكول
والخطوة الاولي عند النظر في استخدام قواعد البيانات هي تقييم ما إذا كانت البيانات ستستفيد من هذه المنظمة.
الخطوة الاساسيه التالية هي إنشاء تعليمات برمجيه مؤتمتة ستطلب الحد الأدنى من المدخلات من المستخدم وإنشاء بنيه بيانات الجدول. في ?...
وليس لدي المؤلفين ما يفصحون عنه.
ويدعم هذا العمل معهد القلب الوطني ، والرئة ، والدم في المعاهد الوطنية للصحة ، ومنح عدد R01 HL129008. ويشكر المؤلفون بشكل خاص أعضاء عائله الطفرة الجينية لل Lmna علي مشاركتهم في الدراسة. ونود أيضا ان نشكر ليندا مكارثي علي مساعدتها في مجال ثقافة الخلايا والحفاظ علي مساحات المختبرات ، ناسام شكري لمشاركتها في تصوير الخلايا وتحليل البيانات النوى ، ومايكل ا. غروبرغ لنصيحته ذات الصلة مع إنشاء قاعده بيانات Microsoft Access الاوليه ، فضلا عن الاجابه علي الاسئله التقنية الأخرى.
Name | Company | Catalog Number | Comments |
4',6'-diaminodino-2-phenylinodole (DAPI) | Life Technologies, Carlsbad, CA | ||
Alexa Fluor 488 Phalloidin | Life Technologies, Carlsbad, CA | ||
Alexa Fluor 750 goat anti-rabbit | Life Technologies, Carlsbad, CA | ||
digital CCD camera ORCAR2 C10600-10B | Hamamatsu Photonics, Shizuoka Prefecture, Japan | ||
fibronectin | Corning, Corning, NY | ||
IX-83 inverted motorized microscope | Olympus America, Center Valley, PA | ||
Matlab R2018b | Mathworks, Natick, MA | ||
MS Access | Microsoft, Redmond, WA | ||
paraformaldehyde (PFA) | Fisher Scientific Company, Hanover Park, IL | ||
polycloncal rabbit anti-human fibronectin | Sigma Aldrich Inc., Saint Louis, MO | ||
polydimethylsiloxane (PDMS) | Ellsworth Adhesives, Germantown, WI | ||
Prolong Gold Antifade | Life Technologies, Carlsbad, CA | ||
rectangular glass coverslips | Fisher Scientific Company, Hanover Park, IL | ||
Triton-X | Sigma Aldrich Inc., Saint Louis, MO |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved