This protocol demonstrates how to achieve femto molar detection sensitivity of proteins in 10 µL of whole blood within 30 min. This can be achieved by using electrospun nanofibrous mats integrated in a lab-on-a-disc, which offers high surface area as well as effective mixing and washing for enhanced signal-to-noise ratio.
We report a concise procedure of fluorescence in situ hybridization (FISH) in the gonad and embryos of Caenorhabditis elegans for observing and quantifying repetitive sequences. We successfully observed and quantified two different repetitive sequences, telomere repeats and template of alternative lengthening of telomeres (TALT).
Here we describe a protocol to express proteins into protoplasts by using PEG-mediated transformation method. The method provides easy expression of proteins of interest, and efficient investigation of protein localization and the import process for various experimental conditions in vivo.
Decellularized extracellular matrix (dECM) can provide suitable microenvironmental cues to recapitulate the inherent functions of target tissues in an engineered construct. This article elucidates the protocols for the decellularization of pancreatic tissue, evaluation of pancreatic tissue-derived dECM bioink, and generation of 3D pancreatic tissue constructs using a bioprinting technique.
This protocol provides detailed experimental steps to establish a three-dimensional in vitro culture of bladder tumor organoids derived from carcinogen-induced murine bladder cancer. Culture methods including passaging, genetic engineering, and orthotopic transplantation of tumor organoids are described.
Hypoxia is a hallmark of tumor microenvironment and plays a crucial role in cancer progression. This article describes the fabrication process of a hypoxic cancer-on-a-chip based on 3D cell-printing technology to recapitulate a hypoxia-related pathology of cancer.
关于 JoVE
版权所属 © 2024 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。