Influenza A viruses (IAVs) are important human respiratory pathogens. To understand the pathogenicity of IAVs and to perform preclinical testing of novel vaccine approaches, animal models mimicking human physiology are required. Here, we describe techniques to evaluate IAV pathogenesis, humoral responses and vaccine efficacy using a mouse model of infection.
The recent epidemic of Zika virus highlights the importance of establishing reverse genetic approaches to develop vaccines and/or therapeutic strategies. Here, we describe the protocol to rescue an infectious recombinant Zika virus from a full-length cDNA clone assembled in a bacterial artificial chromosome under the control of the human cytomegalovirus immediate-early promoter.
Influenza A viruses (IAVs) are contagious respiratory pathogens that cause annual epidemics and occasional pandemics. Here, we describe a protocol to track viral infections in vivo using a novel recombinant luciferase and fluorescence-expressing bi-reporter IAV (BIRFLU). This approach provides researchers with an excellent tool to study IAV in vivo.
关于 JoVE
版权所属 © 2024 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。