The goal of the present study was to develop and validate the potency and safety of spinal adeno-associated virus 9 (AAV9)-mediated gene delivery by using a novel subpial gene delivery technique in adult mice.
We have developed a simple and versatile system to feed hard ticks on laboratory rabbits. Our non-laborious protocol uses easily accessible materials and can be adjusted depending on the requirements of the various experimental settings. The method allows comfortable monitoring and/or sampling of ticks during the entire feeding period.
Here, we present a protocol to synthesize two metal chalcogenides (Cu1.8S and SnSe) suitable for thermoelectrics via an ultrafast (second-range), solvent-free, and one-step mechanochemical synthesis using elemental precursors. Simultaneously, we demonstrate the monitoring of the temperature in the jar during planetary ball milling in situ by the newly developed device.
关于 JoVE
版权所属 © 2024 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。