登录

Plants often form mutualistic relationships with soil-dwelling fungi or bacteria to enhance their roots’ nutrient uptake ability. Root-colonizing fungi (e.g., mycorrhizae) increase a plant’s root surface area, which promotes nutrient absorption. While root-colonizing, nitrogen-fixing bacteria (e.g., rhizobia) convert atmospheric nitrogen (N2) into ammonia (NH3), making nitrogen available to plants for various biological functions. For example, nitrogen is essential for the biosynthesis of the chlorophyll molecules that capture light energy during photosynthesis. Bacteria and fungi, in return, gain access to the sugars and amino acids secreted by the plant’s roots. A variety of plant species evolved root-bacteria and root-fungi nutritional adaptation to thrive.

Other plant species, such as epiphytes, parasites, and carnivores, evolved nutritional adaptations that allowed them to use different organisms for survival. Rather than compete for bioavailable soil nutrients and light, epiphytes grow on other living plants (especially trees) for better nutritional opportunities. Epiphyte-plant relationships are commensal, as only the epiphyte benefits (i.e., better nutrient and light access for photosynthesis) while its host remains unaffected. Epiphytes absorb nearby nutrients through either leaf structures called trichomes (e.g., bromeliads) or aerial roots (e.g., orchids).

Unlike epiphytes, parasitic plants absorb nutrients from their living hosts. Non-photosynthetic dodder, for example, is a holoparasite (i.e., total parasite) that completely depends on its host. Hemiparasites (i.e., partial parasites), such as mistletoe, use their host for water and minerals but are otherwise fully photosynthetic. While both dodder and mistletoe employ haustoria to divert hosts’ nutrients, other parasitic species tap into mycorrhizae associated with other plants to absorb nutrients (e.g., Indian pipe). Indian pipe is non-photosynthetic and relies on this interaction for survival. In parasite-plant relationships, parasites derive nutrients at hosts’ expense.

Carnivorous plants are photosynthetic but live in habitats that lack essential nutrients, such as nitrogen and phosphorus. These plants supplement their nutrient-poor diet by trapping and consuming insects and other small animals. Carnivorous plants developed modified leaves that assist in capturing prey through funnel (e.g., pitcher plant), sticky tentacle (e.g., sundew), or jaw-like (e.g., Venus flytrap) mechanisms. Carnivorous plant-small animal relationships are fundamentally predator-prey relationships. Understanding these plant nutritional adaptations reveals important ecological information, such as which nutrients are essential for plant growth as well as the nutrient status of a given habitat.

Tags
EpiphytesParasitesCarnivoresAutotrophyHeterotrophyPhotosynthesisChloroplastsDodder VinePlant ParasiteHaustoriaStaghorn FernEpiphyte

来自章节 34:

article

Now Playing

34.20 : Epiphytes, Parasites, and Carnivores

植物结构、生长和营养

12.8K Views

article

34.1 : 植物多样性介绍

植物结构、生长和营养

43.3K Views

article

34.2 : 非维管束无核植物

植物结构、生长和营养

62.7K Views

article

34.3 : 维管束无核植物

植物结构、生长和营养

58.9K Views

article

34.4 : 种子植物概论

植物结构、生长和营养

58.8K Views

article

34.5 : 基本植物解剖学:根、茎和叶

植物结构、生长和营养

54.0K Views

article

34.6 : 植物细胞和组织

植物结构、生长和营养

55.4K Views

article

34.7 : 分生组织与植物生长

植物结构、生长和营养

40.7K Views

article

34.8 : 根和芽的一次和二次生长

植物结构、生长和营养

52.0K Views

article

34.9 : 形态发生

植物结构、生长和营养

23.3K Views

article

34.10 : 光采集

植物结构、生长和营养

8.3K Views

article

34.11 : 水和矿物质采集

植物结构、生长和营养

28.6K Views

article

34.12 : 物质短途运输

植物结构、生长和营养

15.5K Views

article

34.13 : 木质部和蒸腾作用驱动的物质运输

植物结构、生长和营养

23.0K Views

article

34.14 : 气孔对蒸腾作用的调节

植物结构、生长和营养

27.4K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。