サインイン

Plants often form mutualistic relationships with soil-dwelling fungi or bacteria to enhance their roots’ nutrient uptake ability. Root-colonizing fungi (e.g., mycorrhizae) increase a plant’s root surface area, which promotes nutrient absorption. While root-colonizing, nitrogen-fixing bacteria (e.g., rhizobia) convert atmospheric nitrogen (N2) into ammonia (NH3), making nitrogen available to plants for various biological functions. For example, nitrogen is essential for the biosynthesis of the chlorophyll molecules that capture light energy during photosynthesis. Bacteria and fungi, in return, gain access to the sugars and amino acids secreted by the plant’s roots. A variety of plant species evolved root-bacteria and root-fungi nutritional adaptation to thrive.

Other plant species, such as epiphytes, parasites, and carnivores, evolved nutritional adaptations that allowed them to use different organisms for survival. Rather than compete for bioavailable soil nutrients and light, epiphytes grow on other living plants (especially trees) for better nutritional opportunities. Epiphyte-plant relationships are commensal, as only the epiphyte benefits (i.e., better nutrient and light access for photosynthesis) while its host remains unaffected. Epiphytes absorb nearby nutrients through either leaf structures called trichomes (e.g., bromeliads) or aerial roots (e.g., orchids).

Unlike epiphytes, parasitic plants absorb nutrients from their living hosts. Non-photosynthetic dodder, for example, is a holoparasite (i.e., total parasite) that completely depends on its host. Hemiparasites (i.e., partial parasites), such as mistletoe, use their host for water and minerals but are otherwise fully photosynthetic. While both dodder and mistletoe employ haustoria to divert hosts’ nutrients, other parasitic species tap into mycorrhizae associated with other plants to absorb nutrients (e.g., Indian pipe). Indian pipe is non-photosynthetic and relies on this interaction for survival. In parasite-plant relationships, parasites derive nutrients at hosts’ expense.

Carnivorous plants are photosynthetic but live in habitats that lack essential nutrients, such as nitrogen and phosphorus. These plants supplement their nutrient-poor diet by trapping and consuming insects and other small animals. Carnivorous plants developed modified leaves that assist in capturing prey through funnel (e.g., pitcher plant), sticky tentacle (e.g., sundew), or jaw-like (e.g., Venus flytrap) mechanisms. Carnivorous plant-small animal relationships are fundamentally predator-prey relationships. Understanding these plant nutritional adaptations reveals important ecological information, such as which nutrients are essential for plant growth as well as the nutrient status of a given habitat.

タグ
EpiphytesParasitesCarnivoresAutotrophyHeterotrophyPhotosynthesisChloroplastsDodder VinePlant ParasiteHaustoriaStaghorn FernEpiphyte

章から 34:

article

Now Playing

34.20 : Epiphytes, Parasites, and Carnivores

植物の構造・成長・栄養

12.8K 閲覧数

article

34.1 : 植物の多様性の紹介

植物の構造・成長・栄養

43.3K 閲覧数

article

34.2 : 非維管束の種無し植物

植物の構造・成長・栄養

62.7K 閲覧数

article

34.3 : 種子のない維管束植物

植物の構造・成長・栄養

58.9K 閲覧数

article

34.4 : 種子植物の紹介

植物の構造・成長・栄養

58.8K 閲覧数

article

34.5 : 植物の基本的な解剖学。根、茎、葉

植物の構造・成長・栄養

54.0K 閲覧数

article

34.6 : 植物の細胞と組織

植物の構造・成長・栄養

55.5K 閲覧数

article

34.7 : 分裂組織と植物の成長

植物の構造・成長・栄養

40.7K 閲覧数

article

34.8 : 根とシュートの一次成長と二次成長

植物の構造・成長・栄養

52.0K 閲覧数

article

34.9 : 形態形成

植物の構造・成長・栄養

23.3K 閲覧数

article

34.10 : 光の獲得

植物の構造・成長・栄養

8.3K 閲覧数

article

34.11 : 水とミネラルの獲得

植物の構造・成長・栄養

28.6K 閲覧数

article

34.12 : 資源の短距離輸送

植物の構造・成長・栄養

15.5K 閲覧数

article

34.13 : 木部と蒸散による資源の輸送

植物の構造・成長・栄養

23.0K 閲覧数

article

34.14 : 気孔による蒸散の制御

植物の構造・成長・栄養

27.4K 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved