登录

Transcription elongation is a dynamic process that alters depending upon the sequence heterogeneity of the DNA being transcribed. Hence, it is not surprising that the elongation complex's composition also varies along the way while transcribing a gene.

The transcription elongation is regulated via pausing of RNA polymerase on several occasions during transcription. In bacteria, these halts are necessary because the transcription of DNA into mRNA is coupled to the translation of that mRNA into a protein. However, in eukaryotes, the transcription is coupled with mRNA processing. Hence, pausing of RNA polymerase around exon-intron junctions is necessary for increasing the efficiency of mRNA splicing.

These halts in RNA Polymerase activity may be reversible or irreversible. In case of a reversible pause, proteins such as TFIIF, elongins, ELL, ensure that the RNA Polymerase resumes elongation after a brief pause. However, if the halt in RNA Polymerase activity is irreversible, it becomes a transcriptional arrest. If transcription is arrested, then the enzyme cannot resume elongation on its own. In such a situation, elongation factors such as TFIIS and pTEFb enable RNA Polymerase II to read through the DNA template at transcriptional arrest sites.

In addition, ATP-dependent chromatin remodeling factors and histone chaperones are also involved in the regulation of transcription elongation. Together they can alter the positions of nucleosomes along the DNA, making it accessible or inaccessible to the transcription machinery.

Hence, RNA polymerase needs the help of several factors to cruise through chromatin and specific sequences that interfere with transcription.

Tags
Transcription Elongation FactorsRNA PolymeraseNucleotidesChromatinHistone ProteinsNucleosomesDNA Binding ProteinsGene TranscriptionAccessory ProteinsEukaryotic Elongation FactorsTemplate DNA StrandCatalytic ActivityATP dependent Chromatin Remodeling ComplexHistone ChaperonesGenomic DNA

来自章节 8:

article

Now Playing

8.10 : Transcription Elongation Factors

转录:DNA(脱氧核糖核酸)到RNA(核糖核酸)

10.5K Views

article

8.1 : 什么是基因表达?

转录:DNA(脱氧核糖核酸)到RNA(核糖核酸)

25.3K Views

article

8.2 : RNA 结构

转录:DNA(脱氧核糖核酸)到RNA(核糖核酸)

23.1K Views

article

8.3 : RNA 稳定性

转录:DNA(脱氧核糖核酸)到RNA(核糖核酸)

10.3K Views

article

8.4 : 细菌 RNA 聚合酶

转录:DNA(脱氧核糖核酸)到RNA(核糖核酸)

25.8K Views

article

8.5 : RNA 的类型

转录:DNA(脱氧核糖核酸)到RNA(核糖核酸)

23.0K Views

article

8.6 : 转录

转录:DNA(脱氧核糖核酸)到RNA(核糖核酸)

33.8K Views

article

8.7 : 转录因子

转录:DNA(脱氧核糖核酸)到RNA(核糖核酸)

19.5K Views

article

8.8 : 真核 RNA 聚合酶

转录:DNA(脱氧核糖核酸)到RNA(核糖核酸)

21.1K Views

article

8.9 : RNA 聚合酶 II 辅助蛋白

转录:DNA(脱氧核糖核酸)到RNA(核糖核酸)

8.9K Views

article

8.11 : 前 mRNA 加工

转录:DNA(脱氧核糖核酸)到RNA(核糖核酸)

24.1K Views

article

8.12 : RNA 剪接

转录:DNA(脱氧核糖核酸)到RNA(核糖核酸)

16.7K Views

article

8.13 : 染色质结构调节前体 mRNA 加工

转录:DNA(脱氧核糖核酸)到RNA(核糖核酸)

6.8K Views

article

8.14 : mRNA 的核输出

转录:DNA(脱氧核糖核酸)到RNA(核糖核酸)

7.4K Views

article

8.15 : 核糖体 RNA 合成

转录:DNA(脱氧核糖核酸)到RNA(核糖核酸)

12.9K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。