登录

Transcription activators are proteins that promote the transcription of genes from DNA to RNA. In most cases, these proteins contain two separate domains ‒ a domain that binds to DNA and a domain for activating transcription; however, in some cases, a single domain is responsible for both binding and activation of transcription, as seen in the glucocorticoid receptor and MyoD.

The binding domains are capable of recognizing and interacting with regulatory sequences on the DNA. These domains are classified into different families and named according to the structural characteristics that enable DNA recognition and binding. Some common types of binding domains include the leucine zipper, zinc finger, and helix-turn-helix motifs. In contrast, domains responsible for gene transcription activation are usually short, simple sequences and are less complex than the binding domains. They are classified by amino acid composition into categories, such as glutamine-rich, proline-rich, and alanine-rich.

Transcription activators aid in the recruitment of various proteins required for transcription such as general transcription factors, RNA polymerase, and co-activators. All these proteins together are known as the pre-initiation complex and depend on transcription activators for their recruitment to the appropriate location. These activators can bind to a site close to the gene’s promoter or several thousand base pairs away from the gene to carry out their function. In cases where they are bound to a site away from the gene, they rely on the flexibility of the DNA to bend and bring them in proximity to the gene promoter. Transcription activators are also required to continue a transcript’s elongation or the re-initiation of transcription in cases when the process stops midway. Transcription activators are known to act synergistically. The transcription achieved by the action of multiple activators is higher than what would occur as a sum of individual factors working separately.

Like other proteins, transcription activators are subject to post-transcriptional modifications. In many cases these modifications help in positive regulation of transcription. For example, acetylation of p53, an activator that regulates genes responsible for tumor suppression, increases its ability to bind to DNA.

Tags
EukaryoticTranscription ActivatorsRNA PolymeraseDNA binding DomainsHelix turn helixZinc FingerLeucine ZipperDimersMajor GrooveAlpha HelixBeta SheetZinc AtomHistidinesMonomersY ShapeLeucineC terminal EndN terminal EndTranscription Activating DomainCo activatorsRNA Polymerase BindingHistone Modification

来自章节 10:

article

Now Playing

10.9 : Eukaryotic Transcription Activators

基因表达

10.6K Views

article

10.1 : 细胞特异性基因表达

基因表达

13.1K Views

article

10.2 : 表达调节发生在多个步骤

基因表达

21.7K Views

article

10.3 : 顺式调节序列

基因表达

9.4K Views

article

10.4 : 转录调节因子的协同结合

基因表达

6.1K Views

article

10.5 : 原核转录激活剂和阻遏剂

基因表达

20.0K Views

article

10.6 : 纵子

基因表达

15.0K Views

article

10.7 : 真核生物启动子区域

基因表达

15.8K Views

article

10.8 : 共激活因子和共阻遏因子

基因表达

7.0K Views

article

10.10 : 真核生物转录抑制剂

基因表达

9.6K Views

article

10.11 : 组合基因对照

基因表达

8.0K Views

article

10.12 : 诱导多能干细胞

基因表达

3.4K Views

article

10.13 : 主转录调节因子

基因表达

6.6K Views

article

10.14 : 表观遗传调控

基因表达

24.0K Views

article

10.15 : 基因组印记和遗传

基因表达

32.3K Views

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。