登录

Intermolecular forces are attractive forces that exist between molecules. They dictate several bulk properties, such as melting points, boiling points, and solubilities (miscibilities) of substances. For example, a high-boiling-point liquid, like water (H2O, b.p. 100 °C), exhibits stronger intermolecular forces compared to a low-boiling-point liquid, like hexane (C6H14, b.p. 68.73 °C). The three kinds of intermolecular interactions include i) ion–dipole forces, ii) dipole–dipole interactions, and iii) van der Waals forces, which include London dispersion forces.

1. Ion–Dipole Forces

Ion–dipole forces are the electrostatic attractions between an ion and a dipole. They are common in solutions and play an important role in the dissolution of ionic compounds, like KCl, in water. The strength of ion–dipole interactions is directly proportional to i) the charge on the ion and ii) the magnitude of the dipole of polar molecules.

2. Dipole–Dipole Interactions

Polar molecules have a partial positive charge on one end and a partial negative charge on the other end of the molecule—a separation of charge called a dipole. The attractive force between two permanent dipoles is called a dipole–dipole attraction—the electrostatic force between the partially positive end of one polar molecule and the partially negative end of another. Hydrogen bonding is a type of dipole–dipole interaction between molecules with hydrogen, bonded to a highly electronegative atom, such as O, N, or F. The resulting partially positively charged H atom on one molecule (the hydrogen bond donor) could interact strongly with a lone pair of electrons of a partially negatively charged O, N, or F atom on adjacent molecules (the hydrogen bond acceptor). Hydrogen bonding increases the boiling point considerably.

3. van der Waals and London Dispersion Forces

The weakest of all forces isthe van der Waals forces, which depend on the intermolecular distances between atoms and molecules. London dispersion forces, a subset of van der Waals forces, are experienced as a result of interactions between uncharged atoms/molecules owing to temporary, spontaneous shifts in electron distribution. The strength of these forces appears to increase with increasing molecular weight owing to the increase in surface area. As a result, compounds of higher molecular weights will generally boil at higher temperatures. Of note is that a branched hydrocarbon (neopentane) normally has a smaller surface area than its respective straight-chain (n-pentane) isomer, and therefore, a lower boiling point.

4. Solubility of Organic Compounds in Water

Liquids that can be homogeneously mixed in any proportion are said to be miscible. Miscible liquids have similar polarities. For example, methanol and water are both polar and capable of hydrogen bonding. On mixing, methanol and water interact through intermolecular hydrogen bonds of comparable strength to the methanol–methanol, and water–water interactions; thus, they are miscible. Likewise, nonpolar liquids like hexane and bromine are miscible with each other through dispersion forces. The chemical axiom “like dissolves like” is useful to predict the miscibility of compounds. Two liquids that do not mix to an appreciable extent are called immiscible. For example, nonpolar hexane is immiscible in polar water. Relatively weak attractive forces between the hexane and water do not adequately overcome the stronger hydrogen bonding forces between water molecules.

This text is adapted fromOpenstax, Chemistry 2e, Section 10.1: Intermolecular Forces,Section 11.3: Solubility, andChapter 10: Liquids and Solids.

Tags

Intermolecular ForcesPhysical PropertiesMelting PointsBoiling PointsSolubilitiesHigh boiling point LiquidLow boiling point LiquidIon dipole ForcesDipole dipole InteractionsVan Der Waals ForcesLondon Dispersion ForcesIon dipole InteractionsDipole dipole AttractionsHydrogen Bonding

来自章节 1:

article

Now Playing

1.12 : Intermolecular Forces and Physical Properties

共价键和结构

20.1K Views

article

1.1 : 什么是有机化学?

共价键和结构

67.5K Views

article

1.2 : 原子的电子结构

共价键和结构

20.7K Views

article

1.3 : 电子配置

共价键和结构

15.9K Views

article

1.4 : 化学键

共价键和结构

15.4K Views

article

1.5 : 极性共价键

共价键和结构

18.3K Views

article

1.6 : Lewis 结构和正式指控

共价键和结构

13.6K Views

article

1.7 : VSEPR 理论

共价键和结构

8.6K Views

article

1.8 : 分子几何和偶极矩

共价键和结构

12.3K Views

article

1.9 : 共振和混合结构

共价键和结构

16.1K Views

article

1.10 : 价键理论和杂化轨道

共价键和结构

18.4K Views

article

1.11 : MO 理论和共价键

共价键和结构

10.1K Views

article

1.13 : 溶解度

共价键和结构

17.1K Views

article

1.14 : 官能团简介

共价键和结构

24.7K Views

article

1.15 : 高级官能团概述

共价键和结构

22.6K Views

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。