JoVE Logo

Entrar

Intermolecular forces are attractive forces that exist between molecules. They dictate several bulk properties, such as melting points, boiling points, and solubilities (miscibilities) of substances. For example, a high-boiling-point liquid, like water (H2O, b.p. 100 °C), exhibits stronger intermolecular forces compared to a low-boiling-point liquid, like hexane (C6H14, b.p. 68.73 °C). The three kinds of intermolecular interactions include i) ion–dipole forces, ii) dipole–dipole interactions, and iii) van der Waals forces, which include London dispersion forces.

1. Ion–Dipole Forces

Ion–dipole forces are the electrostatic attractions between an ion and a dipole. They are common in solutions and play an important role in the dissolution of ionic compounds, like KCl, in water. The strength of ion–dipole interactions is directly proportional to i) the charge on the ion and ii) the magnitude of the dipole of polar molecules.

2. Dipole–Dipole Interactions

Polar molecules have a partial positive charge on one end and a partial negative charge on the other end of the molecule—a separation of charge called a dipole. The attractive force between two permanent dipoles is called a dipole–dipole attraction—the electrostatic force between the partially positive end of one polar molecule and the partially negative end of another. Hydrogen bonding is a type of dipole–dipole interaction between molecules with hydrogen, bonded to a highly electronegative atom, such as O, N, or F. The resulting partially positively charged H atom on one molecule (the hydrogen bond donor) could interact strongly with a lone pair of electrons of a partially negatively charged O, N, or F atom on adjacent molecules (the hydrogen bond acceptor). Hydrogen bonding increases the boiling point considerably.

3. van der Waals and London Dispersion Forces

The weakest of all forces isthe van der Waals forces, which depend on the intermolecular distances between atoms and molecules. London dispersion forces, a subset of van der Waals forces, are experienced as a result of interactions between uncharged atoms/molecules owing to temporary, spontaneous shifts in electron distribution. The strength of these forces appears to increase with increasing molecular weight owing to the increase in surface area. As a result, compounds of higher molecular weights will generally boil at higher temperatures. Of note is that a branched hydrocarbon (neopentane) normally has a smaller surface area than its respective straight-chain (n-pentane) isomer, and therefore, a lower boiling point.

4. Solubility of Organic Compounds in Water

Liquids that can be homogeneously mixed in any proportion are said to be miscible. Miscible liquids have similar polarities. For example, methanol and water are both polar and capable of hydrogen bonding. On mixing, methanol and water interact through intermolecular hydrogen bonds of comparable strength to the methanol–methanol, and water–water interactions; thus, they are miscible. Likewise, nonpolar liquids like hexane and bromine are miscible with each other through dispersion forces. The chemical axiom “like dissolves like” is useful to predict the miscibility of compounds. Two liquids that do not mix to an appreciable extent are called immiscible. For example, nonpolar hexane is immiscible in polar water. Relatively weak attractive forces between the hexane and water do not adequately overcome the stronger hydrogen bonding forces between water molecules.

This text is adapted fromOpenstax, Chemistry 2e, Section 10.1: Intermolecular Forces,Section 11.3: Solubility, andChapter 10: Liquids and Solids.

Tags

Intermolecular ForcesPhysical PropertiesMelting PointsBoiling PointsSolubilitiesHigh boiling point LiquidLow boiling point LiquidIon dipole ForcesDipole dipole InteractionsVan Der Waals ForcesLondon Dispersion ForcesIon dipole InteractionsDipole dipole AttractionsHydrogen Bonding

Do Capítulo 1:

article

Now Playing

1.12 : Forças Intermoleculares e Propriedades Físicas

Ligação Covalente e Estrutura

20.2K Visualizações

article

1.1 : O que é Química Orgânica

Ligação Covalente e Estrutura

69.4K Visualizações

article

1.2 : Estrutura Eletrônica dos Átomos

Ligação Covalente e Estrutura

20.7K Visualizações

article

1.3 : Configurações Eletrônicas

Ligação Covalente e Estrutura

16.0K Visualizações

article

1.4 : Ligações Químicas

Ligação Covalente e Estrutura

15.6K Visualizações

article

1.5 : Ligações Covalentes Polares

Ligação Covalente e Estrutura

18.5K Visualizações

article

1.6 : Estruturas de Lewis e Cargas Formais

Ligação Covalente e Estrutura

13.8K Visualizações

article

1.7 : Teoria RPECV

Ligação Covalente e Estrutura

8.7K Visualizações

article

1.8 : Geometria Molecular e Momentos Dipolo

Ligação Covalente e Estrutura

12.3K Visualizações

article

1.9 : Ressonância e Estruturas Híbridas

Ligação Covalente e Estrutura

16.2K Visualizações

article

1.10 : Teoria da Ligação de Valência e Orbitais Hibridizados

Ligação Covalente e Estrutura

18.5K Visualizações

article

1.11 : Teoria dos OM e Ligações Covalentes

Ligação Covalente e Estrutura

10.2K Visualizações

article

1.13 : Solubilidade

Ligação Covalente e Estrutura

17.1K Visualizações

article

1.14 : Introdução aos Grupos Funcionais

Ligação Covalente e Estrutura

24.8K Visualizações

article

1.15 : Visão Geral dos Grupos Funcionais Avançados

Ligação Covalente e Estrutura

22.8K Visualizações

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados