登录

Overview of the Cytoskeleton

The cytoskeleton is a network of protein filaments present within the cell, having three distinct filaments ̶ microfilaments, microtubules, and intermediate filaments. Each has characteristic features that distinguish them, including the dynamics of their assembly and disassembly, mechanical properties, polarity, and the type of molecular motors associated with them. Earlier, they were thought to be present only in eukaryotic cells; however, their homologs were eventually found in prokaryotic cells. Studies on bacterial homologs of cytoskeletal proteins hypothesize that the cytoskeleton originated in bacteria and archaea.

Despite using the word 'skeleton,' the cytoskeleton is not a fixed structure. It is a dynamic and adaptive structure that participates in various cellular functions. These functions can broadly be categorized as i) Spatial organization of cellular content, ii) Connecting the cell to its external environment both physically and biochemically iii) Generation of coordinated forces that help in cell movement and change in cell shape. Although these filaments are organized into networks that resist deformation, they can undergo rapid reorganization in response to external signals or forces.

Microfilaments or filamentous actin (F-actin) are right-handed spiral filaments of globular actin (G-actin) monomers. These are polar filaments owing to the rate of polymerization at either end. These filaments steadily elongate to produce a strong sustained force required to carry out motility and cell shape changes. Microtubules are hollow cylindrical structures having thirteen protofilaments made up of alpha-beta-tubulin heterodimers. Microtubules are known to have the most complex assembly and disassembly dynamics. Unlike microfilaments, the microtubules rapidly switch between polymerization and depolymerization. The microtubule dynamics are regulated by a structure known as Microtubule Organizing Centres (MTOCs). The third component, intermediate filaments, are long fibrous proteins composed of multiple subunits formed through multistep processes. These filaments are generally static structures, their dynamics regulated through post-translational modifications like phosphorylation and dephosphorylation.

Tags
CytoskeletonProtein FilamentsMicrofilamentsMicrotubulesIntermediate FilamentsAssemblyDisassemblyDynamicsMechanical PropertiesPolarityMolecular MotorsEukaryotic CellsProkaryotic CellsBacterial HomologsArchaeaSpatial OrganizationCellular ContentCell to environment ConnectionForcesCell MovementCell Shape ChangeNetworksDeformation ResistanceRapid ReorganizationExternal Signals

来自章节 25:

article

Now Playing

25.1 : Introduction to the Cytoskeleton

The Cytoskeleton I: Actin and Microfilaments

20.2K Views

article

25.2 : 细胞骨架丝的适应性

The Cytoskeleton I: Actin and Microfilaments

3.5K Views

article

25.3 : 细胞骨架的极性

The Cytoskeleton I: Actin and Microfilaments

12.2K Views

article

25.4 : 细胞骨架丝的组装

The Cytoskeleton I: Actin and Microfilaments

14.1K Views

article

25.5 : 细胞骨架连接蛋白 - Plakins

The Cytoskeleton I: Actin and Microfilaments

2.2K Views

article

25.6 : 细胞骨架辅助蛋白

The Cytoskeleton I: Actin and Microfilaments

2.9K Views

article

25.7 : 细菌中的细胞骨架蛋白

The Cytoskeleton I: Actin and Microfilaments

3.2K Views

article

25.8 : 病毒和细菌的细胞内运动

The Cytoskeleton I: Actin and Microfilaments

2.7K Views

article

25.9 : 研究细胞骨架

The Cytoskeleton I: Actin and Microfilaments

5.6K Views

article

25.10 : 肌动蛋白简介

The Cytoskeleton I: Actin and Microfilaments

4.6K Views

article

25.11 : 肌动蛋白聚合

The Cytoskeleton I: Actin and Microfilaments

5.9K Views

article

25.12 : 肌动蛋白跑步机

The Cytoskeleton I: Actin and Microfilaments

7.7K Views

article

25.13 : 产生直或支链肌动蛋白丝

The Cytoskeleton I: Actin and Microfilaments

2.7K Views

article

25.14 : 肌动蛋白丝解聚

The Cytoskeleton I: Actin and Microfilaments

2.8K Views

article

25.15 : 高阶肌动蛋白丝的形成

The Cytoskeleton I: Actin and Microfilaments

2.8K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。