登录

Actin is a highly conserved cytoskeletal protein found abundantly in eukaryotic cells. It constitutes 10% weight of the total cellular protein in muscle cells, while in non-muscle cells, it is lower and makes up around 1–5 percent of the total cell protein. Actin found in the unicellular amoebae and complex multicellular animals is around 80% similar, demonstrating their conservation over a billion years of evolution. Actin coding genes are conserved within species and across different species. For example, actins present in the yeast Saccharomyces cerevisiae and humans are 87% similar.

Actin was first discovered by W. D. Halliburton in 1887 in muscle extracts as a protein that can induce coagulation of the muscle plasma. It was later purified from muscle extract by Brunó Ferenc Straub in 1942. Straub named it 'actin' due to its ability to activate the motor protein myosin. In the early seventies, actin was also found in non-muscle cells andAcanthamoeba. In the late 1970s, Multiple actin isoforms with issue-specific expression were discovered by sequencing actins using amino acid hydrolysis. These isoforms were nearly identical, with only a few amino acid substitutions. They were classified into α-, β-, and γ-actins based on their isoelectric points. For example, birds and mammals have six actin isoforms expressed at different cell types. Actins expressed in skeletal muscle cells are classified as α-skeletal-actin, in cardiac muscles as α-cardiac-actin, and those in smooth muscles as α-smooth-actin and γ-smooth-actin. Two other isoforms, β-cyto-actin and γ-cyto-actin, are ubiquitously expressed in these organisms.

Subsequent research on these proteins led to the discovery of their role in various cellular functions such as muscle contraction, cell migration, cell adhesion, cell division, protein trafficking, and membrane organization. The first X-ray structure of monomeric G-actin associated with DNAse I was solved only in 1990, resulting in the first atomic model of actin filaments. Several other structures in complex with different proteins have been reported since then.

Tags
ActinCytoskeletal ProteinEukaryotic CellsMuscle CellsNon muscle CellsCellular ProteinConservationEvolutionCoding GenesSaccharomyces CerevisiaeHumansCoagulationMyosinAcanthamoebaIsoformsIsoelectric PointsSkeletal Muscle Cells

来自章节 25:

article

Now Playing

25.10 : Introduction to Actin

The Cytoskeleton I: Actin and Microfilaments

4.6K Views

article

25.1 : 细胞骨架简介

The Cytoskeleton I: Actin and Microfilaments

20.2K Views

article

25.2 : 细胞骨架丝的适应性

The Cytoskeleton I: Actin and Microfilaments

3.5K Views

article

25.3 : 细胞骨架的极性

The Cytoskeleton I: Actin and Microfilaments

12.2K Views

article

25.4 : 细胞骨架丝的组装

The Cytoskeleton I: Actin and Microfilaments

14.1K Views

article

25.5 : 细胞骨架连接蛋白 - Plakins

The Cytoskeleton I: Actin and Microfilaments

2.2K Views

article

25.6 : 细胞骨架辅助蛋白

The Cytoskeleton I: Actin and Microfilaments

2.9K Views

article

25.7 : 细菌中的细胞骨架蛋白

The Cytoskeleton I: Actin and Microfilaments

3.2K Views

article

25.8 : 病毒和细菌的细胞内运动

The Cytoskeleton I: Actin and Microfilaments

2.7K Views

article

25.9 : 研究细胞骨架

The Cytoskeleton I: Actin and Microfilaments

5.6K Views

article

25.11 : 肌动蛋白聚合

The Cytoskeleton I: Actin and Microfilaments

5.9K Views

article

25.12 : 肌动蛋白跑步机

The Cytoskeleton I: Actin and Microfilaments

7.7K Views

article

25.13 : 产生直或支链肌动蛋白丝

The Cytoskeleton I: Actin and Microfilaments

2.7K Views

article

25.14 : 肌动蛋白丝解聚

The Cytoskeleton I: Actin and Microfilaments

2.8K Views

article

25.15 : 高阶肌动蛋白丝的形成

The Cytoskeleton I: Actin and Microfilaments

2.8K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。