登录

Secretory vesicles, also known as dense core vesicles (DCVs), are membrane-bound vesicles that transport secretory proteins, such as hormones or neurotransmitters. Regulated secretory vesicles transport proteins from the trans-Golgi network to the exterior of the cell. Proteins present in regulated secretory vesicles are required to be rapidly exocytosed in large amounts upon a specific stimulus.

Various proteins regulate the aggregation of molecules inside the secretory vesicles. Chromogranins (Cgs) A and B are proteins that bind to soluble molecules present in secretory vesicles. This binding aggregates the soluble molecules, forming DCVs. Cgs function optimally at low pH and high intracellular calcium concentration. The low pH is maintained by the continuous pumping of protons by the V-type ATPases. A high concentration of calcium is present in the endoplasmic reticulum and Golgi complex of most mammalian cells. Hence, the secretory vesicles that bud off from the trans-Golgi network are rich in calcium. Calcium induces pH-dependent conformational changes in Cgs A and B. These conformational changes lead to the binding and aggregation of CgsA and B among other vesicular matrix proteins with the vesicular membrane. Aggregation is important for specific proteins to be sorted into regulated secretory vesicles.

The yeast Saccharomyces cerevisiae is a model system for studying the regulation of secretory vesicle-mediated transport. In 1979, Randy Schekman and Peter Novik generated temperature-sensitive mutants of S. cerevisiae. These mutants expressed proteins that were functional only at low temperatures but not at 37°C. Schekman and Novik observed that these mutants accumulated vesicles and internal membranes. These mutants were also defective in different stages of protein secretion and therefore called them sec mutants. Some sec mutants contained vesicles that were unable to fuse with the plasma membrane, while other mutants could not transport proteins to other organelles. Further, molecular analysis of these mutants revealed 23 sec genes that produced proteins with regulatory roles in different transport stages of secretory vesicles.

Tags
Secretory VesiclesDense Core VesiclesRegulated Secretory VesiclesSecretory ProteinsHormonesNeurotransmittersTrans Golgi NetworkExocytosisChromogranins A And BAggregationSoluble MoleculesV type ATPasesCalcium ConcentrationPH dependent Conformational ChangesVesicular Matrix ProteinsYeast Saccharomyces Cerevisiae

来自章节 18:

article

Now Playing

18.13 : Overview of Secretory Vesicles

Endocytosis and Exocytosis

5.9K Views

article

18.1 : 内吞作用

Endocytosis and Exocytosis

8.1K Views

article

18.2 : 吞噬作用

Endocytosis and Exocytosis

5.7K Views

article

18.3 : 胞饮作用

Endocytosis and Exocytosis

3.1K Views

article

18.4 : 受体介导的内吞作用

Endocytosis and Exocytosis

5.7K Views

article

18.5 : 早期内体:转铁蛋白的内吞作用

Endocytosis and Exocytosis

3.2K Views

article

18.6 : 内体的成熟

Endocytosis and Exocytosis

4.0K Views

article

18.7 : 腔内囊泡和多泡体

Endocytosis and Exocytosis

3.2K Views

article

18.8 : MVB 中的受体下调

Endocytosis and Exocytosis

2.0K Views

article

18.9 : 外泌体概述

Endocytosis and Exocytosis

2.6K Views

article

18.10 : 回收内体和转胞吞作用

Endocytosis and Exocytosis

2.5K Views

article

18.11 : IgG 的转胞吞作用

Endocytosis and Exocytosis

2.6K Views

article

18.12 : 胞吐作用

Endocytosis and Exocytosis

6.0K Views

article

18.14 : 胰岛素分泌囊泡

Endocytosis and Exocytosis

4.7K Views

article

18.15 : 分泌囊泡与质膜的融合

Endocytosis and Exocytosis

8.1K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。