JoVE Logo

登录

15.8 : Insertion of Single-pass Transmembrane Proteins in the RER

Integral membrane proteins are proteins adhered to the lipid bilayer of a cell organelle or membrane. They can be of two types: transmembrane integral proteins that span the lipid bilayer and monotopic proteins that are attached to either side of the membrane but do not pass through it.

Integral transmembrane proteins possess transmembrane and extra membrane domains. The transmembrane domains are primarily made of 20-25 hydrophobic amino acids arranged in a helical secondary confirmation. These domains are stable enough to be embedded in the phospholipid interior of the membrane and are critical in determining the protein's topology. Such proteins are inserted into the ER membrane co-translationally and are broadly categorized as single-pass and multipass transmembrane proteins. There are three types of single-pass transmembrane proteins with a single domain traversing through the membrane.

Type I membrane proteins have a cleavable ER-signal sequence, a single transmembrane domain, the N terminal placed in the ER lumen. It has two distinct sequences to start and stop the polypeptide transfer through the translocon on the ER membrane. The human growth hormone receptor is a type I transmembrane protein.

Type II membrane proteins also have a single transmembrane domain, but it acts as a non-cleavable signal sequence and a membrane anchor, unlike type I membrane proteins. The transmembrane domain of the type II proteins is also called the signal anchor sequence. This sequence is always preceded by positive amino acid residues that prevent the N terminal of the polypeptide chain from slipping down into the translocon. Hence, the C terminal of type II proteins is oriented inside the ER lumen. The transferrin receptor and the Golgi galactosyltransferase are examples of a type II membrane protein.

Type III membrane proteins are similar to type II proteins in terms of the transmembrane domain structure; however, the positive amino acid residues are placed after the signal-anchor sequence. Thus, their N terminal is inserted into the translocon, and the C terminal is left out in the cytosol. Cytochrome P40 is a type III membrane protein.

Tags

Integral Membrane ProteinsTransmembrane ProteinsMonotopic ProteinsTransmembrane DomainsER MembraneSingle pass Transmembrane ProteinsType I Membrane ProteinsType II Membrane ProteinsType III Membrane ProteinsSignal SequenceSignal Anchor SequenceTransloconER LumenCytosolHuman Growth Hormone ReceptorTransferrin ReceptorGolgi GalactosyltransferaseCytochrome P40

来自章节 15:

article

Now Playing

15.8 : Insertion of Single-pass Transmembrane Proteins in the RER

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

6.4K Views

article

15.1 : 内质网

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

9.3K Views

article

15.2 : 光滑的内质网

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

5.5K Views

article

15.3 : ER 在分泌途径中的作用

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

5.1K Views

article

15.4 : 将蛋白质引导至粗面内质网

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

7.0K Views

article

15.5 : ER 膜上的蛋白质转位机制

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

4.3K Views

article

15.6 : 共翻译蛋白易位

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

7.0K Views

article

15.7 : 蛋白质翻译后易位到 RER

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

5.5K Views

article

15.9 : 在 RER 中插入多通道跨膜蛋白

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

7.7K Views

article

15.10 : 蛋白质在 ER 膜中的尾部锚定

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.0K Views

article

15.11 : 蛋白质在 ER 膜中的 GPI 锚定

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.9K Views

article

15.12 : RER 中的蛋白质修饰

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

4.9K Views

article

15.13 : RER 中的蛋白质折叠质量检查

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.6K Views

article

15.14 : 从 ER 中导出错误折叠的蛋白质

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.4K Views

article

15.15 : 未折叠的蛋白质反应

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

4.3K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。