登录

Peroxisomes are specialized organelles present in fungi, plant, and animal cells. It can vary in number, size, morphology, and activity depending on the type of tissue and the nutritional state of the cell. For example, cells with active lipid metabolism, such as adipocytes, neurons, and hepatocytes, have more peroxisomes than other cells in the body. Besides their primary role in breaking down complex organic molecules, peroxisomes can also synthesize specific macromolecules and participate in redox signaling.

Hydrogen peroxide: recycle and reuse

Peroxisomes act as a source as well as a sink for hydrogen peroxide. Oxidation of fatty acids releases hydrogen peroxide, which can either be degraded by catalase or oxidize another organic molecule such as ethanol. Furthermore, through specialized channel proteins present on their membrane, peroxisomes release hydrogen peroxide at low levels for participation in intracellular signaling pathways.

Peroxisomes in biosynthesis

Peroxisomes in the brain and heart cells synthesize plasmalogens, a class of glycerophospholipids present in myelin sheaths.

Peroxisomes in plant cells

In addition to β-oxidation of fatty acids, peroxisomes perform many diverse functions in plants. In leaves, they are involved in photorespiration and link chloroplast and mitochondria to recover any carbon lost during photosynthesis. Germinating seedlings contain specialized peroxisomes called glyoxysomes that convert lipids to sugars using the glyoxylate cycle and generate energy for the growing plant.

Tags
PeroxisomesOrganellesLipid MetabolismAdipocytesNeuronsHepatocytesHydrogen PeroxideCatalaseRedox SignalingPlasmalogensGlycerophospholipidsPhotorespirationChloroplastMitochondriaGlyoxysomesGlyoxylate Cycle

来自章节 15:

article

Now Playing

15.19 : Peroxisomes

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

7.9K Views

article

15.1 : 内质网

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

8.7K Views

article

15.2 : 光滑的内质网

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

5.0K Views

article

15.3 : ER 在分泌途径中的作用

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

4.4K Views

article

15.4 : 将蛋白质引导至粗面内质网

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

6.7K Views

article

15.5 : ER 膜上的蛋白质转位机制

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

4.1K Views

article

15.6 : 共翻译蛋白易位

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

6.7K Views

article

15.7 : 蛋白质翻译后易位到 RER

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

5.3K Views

article

15.8 : 在 RER 中插入单通道跨膜蛋白

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

6.1K Views

article

15.9 : 在 RER 中插入多通道跨膜蛋白

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

7.4K Views

article

15.10 : 蛋白质在 ER 膜中的尾部锚定

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.0K Views

article

15.11 : 蛋白质在 ER 膜中的 GPI 锚定

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.8K Views

article

15.12 : RER 中的蛋白质修饰

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

4.6K Views

article

15.13 : RER 中的蛋白质折叠质量检查

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.5K Views

article

15.14 : 从 ER 中导出错误折叠的蛋白质

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.2K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。