登录

The activation energy (or free energy of activation), abbreviated as Ea, is the small amount of energy input necessary for all chemical reactions to occur. During chemical reactions, certain chemical bonds break, and new ones form. For example, when a glucose molecule breaks down, bonds between the molecule's carbon atoms break. Since these are energy-storing bonds, they release energy when broken. However, the molecule must be somewhat contorted to get into a state that allows the bonds to break. A small energy input is required to achieve this high-energy, unstable state, called the transition state. For this reason, reactant molecules do not last long in their transition state but very quickly proceed to the chemical reaction's next steps. The reaction's transition state exists at a higher energy state than the reactants, and thus, Ea is always positive.

When an enzyme binds its substrate, it forms an enzyme-substrate complex. This complex lowers the reaction's activation energy and promotes its rapid progression in one of many ways. The enzyme-substrate complex can lower the activation energy by contorting substrate molecules in such a way as to facilitate bond-breaking, helping to reach the transition state. Enzymes can also lower activation energies by taking part in the chemical reaction. The amino acid residues can provide specific ions or chemical groups that form covalent bonds with substrate molecules as a necessary step in the reaction process. It is important to remember that the enzyme will always return to its original state at the reaction's completion. One of the hallmark properties of enzymes is that they remain ultimately unchanged by the reactions they catalyze. After an enzyme catalyzes a reaction, it releases its product(s).

This text is adapted from Openstax Biology 2e, Section 6.2 Potential, Kinetic, Free and Activation energy and Section 6.5: Enzymes,

Tags
EnzymesActivation EnergyTransition StateEnzyme substrate ComplexCatalysisChemical Reaction

来自章节 3:

article

Now Playing

3.12 : Enzymes and Activation Energy

Energy and Catalysis

11.2K Views

article

3.1 : 热力学第一定律

Energy and Catalysis

5.2K Views

article

3.2 : 热力学第二定律

Energy and Catalysis

4.8K Views

article

3.3 : 细胞内焓

Energy and Catalysis

5.6K Views

article

3.4 : Cell 内的熵

Energy and Catalysis

10.1K Views

article

3.5 : 自由能源简介

Energy and Catalysis

7.9K Views

article

3.6 : 细胞内的内能和能能反应

Energy and Catalysis

13.9K Views

article

3.7 : 平衡结合常数和结合强度

Energy and Catalysis

8.9K Views

article

3.8 : 自由能和平衡

Energy and Catalysis

5.9K Views

article

3.9 : 单元中的非平衡

Energy and Catalysis

4.0K Views

article

3.10 : 有机分子的氧化和还原

Energy and Catalysis

5.7K Views

article

3.11 : 酶简介

Energy and Catalysis

16.4K Views

article

3.13 : 酶动力学简介

Energy and Catalysis

19.2K Views

article

3.14 : 周转次数和催化效率

Energy and Catalysis

9.6K Views

article

3.15 : 催化完美的酶

Energy and Catalysis

3.8K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。