JoVE Logo

登录

3.16 : Introduction to Mechanisms of Enzyme Catalysis

For many years, scientists thought that enzyme-substrate binding took place in a simple "lock-and-key" fashion. This model stated that the enzyme and substrate fit together perfectly in one instantaneous step. However, current research supports a more refined view scientists call induced fit. The induced-fit model expands upon the lock-and-key model by describing a more dynamic interaction between enzyme and substrate. As the enzyme and substrate come together, their interaction causes a mild shift in the enzyme's structure that confirms an ideal binding arrangement between the enzyme and the substrate's transition state. This ideal binding maximizes the enzyme's ability to catalyze its reaction.

The active sites of enzymes are suited to provide specific environmental conditions and are also subject to local environmental influences. Increasing the environmental temperature generally increases reaction rates, enzyme-catalyzed or otherwise. However, increasing or decreasing the temperature outside of an optimal range can affect chemical bonds within the active site to influence substrate binding. High temperatures will eventually cause enzymes, like other biological molecules, to denature, changing the substance's natural properties. Likewise, the local environment's pH can also affect enzyme function. Active site amino acid residues have their own acidic or basic properties optimal for catalysis. Enzymes function optimally within a specific pH range, and altering the temperature or acidic or basic nature can affect the catalytic activity.

Many enzymes don't work optimally, or even at all, unless bound to other specific non-protein helper molecules, either temporarily through ionic or hydrogen bonds or permanently through stronger covalent bonds. Two types of helper molecules are cofactors and coenzymes. Binding to these molecules promotes optimal conformation and function for their respective enzymes. Cofactors are inorganic ions such as iron (Fe2+) and magnesium (Mg2+). For example, DNA polymerase requires a bound zinc ion (Zn2+) to function. Coenzymes are organic helper molecules with a basic atomic structure comprised of carbon and hydrogen, required for enzyme action. The most common sources of coenzymes are dietary vitamins. Some vitamins are precursors to coenzymes, and others act directly as coenzymes.

This text is adapted from Openstax, Biology 2e, Section 6.5 Enzymes

Tags

Enzyme CatalysisLock and key ModelInduced fit ModelActive SiteTemperaturePHCofactorsCoenzymesVitaminsDNA Polymerase

来自章节 3:

article

Now Playing

3.16 : Introduction to Mechanisms of Enzyme Catalysis

Energy and Catalysis

7.9K Views

article

3.1 : 热力学第一定律

Energy and Catalysis

5.5K Views

article

3.2 : 热力学第二定律

Energy and Catalysis

5.1K Views

article

3.3 : 细胞内焓

Energy and Catalysis

5.8K Views

article

3.4 : Cell 内的熵

Energy and Catalysis

10.3K Views

article

3.5 : 自由能源简介

Energy and Catalysis

8.2K Views

article

3.6 : 细胞内的内能和能能反应

Energy and Catalysis

14.7K Views

article

3.7 : 平衡结合常数和结合强度

Energy and Catalysis

9.0K Views

article

3.8 : 自由能和平衡

Energy and Catalysis

6.0K Views

article

3.9 : 单元中的非平衡

Energy and Catalysis

4.1K Views

article

3.10 : 有机分子的氧化和还原

Energy and Catalysis

6.1K Views

article

3.11 : 酶简介

Energy and Catalysis

17.0K Views

article

3.12 : 酶和活化能

Energy and Catalysis

11.6K Views

article

3.13 : 酶动力学简介

Energy and Catalysis

19.6K Views

article

3.14 : 周转次数和催化效率

Energy and Catalysis

9.9K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。