JoVE Logo

登录

15.16 : Regulation of the Unfolded Protein Response

Inositol-requiring kinase one or IRE1 is the most conserved eukaryotic unfolded protein response (UPR) receptor. It is a type I transmembrane protein kinase receptor with a distinctive site-specific RNase activity. As the binding mechanics of the misfolded proteins with the N-terminal domain of IRE-1 are unclear, three binding models — direct, indirect, and allosteric -- are proposed for receptor activation. Nevertheless, it is known that once a misfolded protein associates with IRE1, it activates its kinase domain, which then trans-autophosphorylates each other, exposing the endoribonuclease or RNA-splicing domains.

IRE1 and ER Stress Regulation

Activated IRE1 molecules form a multimeric assembly that unconventionally carries out spliceosome-independent splicing of the mRNA encoding X-box binding protein one, or XBP1. XBP1 is a transcription activator that upregulates the production of proteins required for ER folding and degradation. Besides XBP1 mRNA, IRE1 cleaves other mRNA substrates by the regulated IRE1-dependent decay of messenger RNAs or RIDD. The target mRNAs for RIDD carry a consensus sequence in their cleavage sites, which helps form a stem-loop structure for recognition by IRE1. RIDD reduces the number of nascent proteins directed to the ER lumen or membrane and reduces the load on protein folding and quality check in the ER.

During proteotoxic stress, the IRE1 response can activate UPR to help establish protein homeostasis in the ER. If the UPR fails to salvage the cell by reducing the ER protein overload, IRE1 initiates cell death through the decay of anti-apoptotic microRNAs. Thus, IRE1 signaling is involved in fundamental cellular physiology and homeostasis.

Tags

Unfolded Protein ResponseIRE1ER StressXBP1RIDDProteotoxic StressProtein HomeostasisCell DeathApoptosis

来自章节 15:

article

Now Playing

15.16 : Regulation of the Unfolded Protein Response

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

2.3K Views

article

15.1 : 内质网

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

9.2K Views

article

15.2 : 光滑的内质网

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

5.4K Views

article

15.3 : ER 在分泌途径中的作用

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

5.1K Views

article

15.4 : 将蛋白质引导至粗面内质网

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

6.9K Views

article

15.5 : ER 膜上的蛋白质转位机制

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

4.3K Views

article

15.6 : 共翻译蛋白易位

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

7.0K Views

article

15.7 : 蛋白质翻译后易位到 RER

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

5.4K Views

article

15.8 : 在 RER 中插入单通道跨膜蛋白

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

6.4K Views

article

15.9 : 在 RER 中插入多通道跨膜蛋白

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

7.7K Views

article

15.10 : 蛋白质在 ER 膜中的尾部锚定

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.0K Views

article

15.11 : 蛋白质在 ER 膜中的 GPI 锚定

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.9K Views

article

15.12 : RER 中的蛋白质修饰

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

4.9K Views

article

15.13 : RER 中的蛋白质折叠质量检查

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.6K Views

article

15.14 : 从 ER 中导出错误折叠的蛋白质

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.4K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。