JoVE Logo

登录

Although it is possible to reduce a carboxylic acid to an aldehyde, strong reducing agents, like lithium aluminum hydride (LAH), prohibit a controlled reduction, instead causing the generated aldehyde to instantly over-reduce to a primary alcohol.

Reducing carboxylic acid derivatives like acyl chlorides (RCOCl), esters (RCO2R′), and nitriles (RCN) using milder aluminum hydride agents like lithium tri-tert-butoxyaluminum hydride [LiAlH(O-t-Bu)3] and diisobutylaluminum hydride [DIBAL-H] allows the easy conversion of the derivative to the corresponding aldehyde. This is because alkylaluminum hydrides are less reactive than LAH, as the former is more sterically hindered.

According to recent studies, a reductant like diphenylsilane in combination with an air-stable Ni precatalyst and dimethyl dicarbonate as an activator converts most of the carboxylic acid to the aldehyde without causing any over-reduction.

In other studies, a hydrosilane through visible light photoredox catalysis efficiently reduces carboxylic acids to aldehydes.

Ketones, unlike aldehydes, can be directly prepared from carboxylic acids using organolithium reagents. The acid rapidly reacts with two equivalents of an organolithium reagent to form a dianion. This dianion gets protonated to form the corresponding hydrate, which loses a water molecule to give a ketone.

Both aldehydes and ketones can be prepared from nitriles using suitable reducing agents. Aldehydes are formed by the partial reduction of nitriles in the presence of DIBAL-H. The nitrile first forms an aluminum complex, which later, on hydrolysis, yields the corresponding aldehyde. Nitriles can be reduced to ketones via imine intermediates using Grignard or organolithium reagents.

Tags

AldehydesKetonesNitrilesCarboxylic AcidsReductionLithium Aluminum HydrideDIBAL HOrganolithiumGrignardImineDianionPhotocatalysis

来自章节 12:

article

Now Playing

12.8 : Preparation of Aldehydes and Ketones from Nitriles and Carboxylic Acids

Aldehydes and Ketones

3.3K Views

article

12.1 : 醛和酮的结构

Aldehydes and Ketones

8.1K Views

article

12.2 : IUPAC 醛类命名法

Aldehydes and Ketones

5.2K Views

article

12.3 : IUPAC 酮的命名法

Aldehydes and Ketones

5.3K Views

article

12.4 : 醛类和酮类的俗名

Aldehydes and Ketones

3.3K Views

article

12.5 : 醛和酮的红外和紫外-可见光谱

Aldehydes and Ketones

5.0K Views

article

12.6 : 醛和酮的 NMR 波谱和质谱

Aldehydes and Ketones

3.6K Views

article

12.7 : 从醇、烯烃和炔烃制备醛和酮

Aldehydes and Ketones

3.4K Views

article

12.9 : 从羧酸衍生物制备醛和酮

Aldehydes and Ketones

2.5K Views

article

12.10 : 羰基的亲核加成:一般机制

Aldehydes and Ketones

5.0K Views

article

12.11 : 醛和酮与水:水合物的形成

Aldehydes and Ketones

3.0K Views

article

12.12 : 醛类和酮类与醇类:半缩醛形成

Aldehydes and Ketones

5.5K Views

article

12.13 : 醛类和酮类的保护基团:简介

Aldehydes and Ketones

6.4K Views

article

12.14 : 缩醛和硫代缩醛作为醛和酮的保护基团

Aldehydes and Ketones

3.9K Views

article

12.15 : 醛和酮与 HCN:氰醇形成概述

Aldehydes and Ketones

2.5K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。